分割等和子集:动态规划思路与实现解析

分割等和子集算法:动态规划思路与实现解析

在算法的学习过程中,“分割等和子集”是一道经典的动态规划题目,它主要考察我们对问题的转化能力以及动态规划思想的运用。接下来,我们将深入剖析这一算法,从解题思路的梳理,到代码实现,再到对算法结构和优点的解读,带你掌握解决这类问题的关键。
在这里插入图片描述

一、题目理解与需求分析

(一)题目描述

给定一个只包含正整数的非空数组 nums,判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。例如,数组 [1,5,11,5] 可以分割成 [1,5,5][11],两者和相等,返回 true ;数组 [1,2,3,5] 无法分割,返回 false

(二)核心矛盾提炼

  • 和的计算:首先需要计算数组的总和,如果总和是奇数,那么肯定无法分割成两个和相等的子集(因为奇数不能被 2 整除 )。如果总和是偶数,问题就转化为是否能从数组中选出一些元素,使得它们的和等于总和的一半。
  • 元素选择:这类似于一个背包问题,即从数组中选择若干元素(每个元素只能选一次 ),使得它们的和恰好为目标值(总和的一半 )。

二、解题思路:动态规划的应用

(一)问题转化

首先计算数组 nums 的总和 total

  • 如果 total 是奇数,直接返回 false,因为无法分割成两个和相等的子集。
  • 如果 total 是偶数,计算目标值 target = total / 2,问题就转化为:是否能从数组中选取若干元素,使得它们的和等于 target 。这就变成了一个典型的 0-1 背包问题(每个元素只能选或不选 )。

(二)状态定义

定义 dp[i][j] 表示在前 i 个元素中,是否能选取若干元素使得它们的和等于 j 。其中 i 表示元素的索引(从 1 开始 ),j 表示目标和。

(三)状态转移方程推导

对于第 i 个元素(对应数组中的 nums[i - 1] ,因为 i 从 1 开始 ),有两种选择:

  • 不选第 i 个元素:那么 dp[i][j] 的值就等于 dp[i - 1][j] ,即前 i - 1 个元素能否组成和为 j 的子集。
  • 选第 i 个元素:如果 j >= nums[i - 1] ,那么 dp[i][j] 的值就等于 dp[i - 1][j - nums[i - 1]] ,即前 i - 1 个元素能否组成和为 j - nums[i - 1] 的子集,加上当前这个元素后和为 j

所以,状态转移方程为:

dp[i][j] = dp[i - 1][j] or (j >= nums[i - 1] and dp[i - 1][j - nums[i - 1]])

(四)初始条件确定

  • dp[0][0] = true:表示前 0 个元素(没有元素 )时,和为 0 是可以实现的(选 0 个元素 )。
  • 对于 j > 0dp[0][j] = false:因为没有元素可选,无法组成和大于 0 的子集。

(五)遍历求解

首先计算 total ,判断是否为奇数。如果是,直接返回 false 。否则,计算 target = total / 2 ,然后创建二维 dp 数组(也可以优化为一维数组 ),按照状态转移方程进行遍历计算。最终,dp[n][target]n 是数组长度 )的值就是答案,如果为 true ,说明可以分割,否则不能。

以示例 1 nums = [1,5,11,5] 为例:

  1. 计算 total = 1 + 5 + 11 + 5 = 22,是偶数,target = 11
  2. 初始化 dp 数组,dp[0][0] = true
  3. 处理第一个元素 1i = 1 ):
    • 对于 j111
      • j = 1 时,dp[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哲谐嘉xhm

您的赞赏是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值