正定矩阵(Positive Definite Matrices)、半正定矩阵(Positive Semidefinite Matrices)

1.正定矩阵、半正定矩阵

推荐文章:如何理解正定矩阵和半正定矩阵

1.1 正定矩阵

1.1.1 判断正定矩阵

1.矩阵的所有特征值都为正数

下面以对称矩阵为例,对称矩阵的特征值为正数,所以对称矩阵是正定矩阵


λ 1 > 0 、 λ 2 > 0   { λ 1 λ 2 = d e t   S = a c − b 2 > 0 λ 1 + λ 2 = t r   S = a + c > 0 \lambda_1\gt0、\lambda_2\gt0\\ ~\\ \begin{cases} \lambda_1\lambda_2=det\ S=ac-b^2\gt0\\ \lamb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值