大规模语言模型从理论到实践 生成式预训练语言模型GPT

大规模语言模型从理论到实践 生成式预训练语言模型GPT

关键词:

大规模语言模型,生成式预训练,GPT,深度学习,自然语言处理,Transformer

1. 背景介绍

1.1 问题的由来

随着互联网的迅速发展,人类创造和积累了海量的文本数据。如何有效地利用这些数据,让计算机理解和生成人类语言,一直是自然语言处理(Natural Language Processing,NLP)领域的核心问题。近年来,随着深度学习技术的飞速发展,大规模语言模型(Large Language Models,LLMs)逐渐成为NLP领域的研究热点。其中,生成式预训练语言模型GPT系列在自然语言理解和生成方面取得了显著的成果,推动了NLP技术的快速发展。

1.2 研究现状

自从2018年GPT-1发布以来,GPT系列模型在多个NLP任务上取得了突破性的进展。以下是GPT系列模型的发展历程:

  • GPT-1 (2018): 首个基于Transformer的生成式预训练语言模型,在多项NLP任务上取得了当时最佳的成果。
  • GPT-2 (2019): 将模型规模扩大到1.5B参数,在多项NLP任务上取得了当时最佳的成果,并提出了“上下文窗口”的概念,进一步提升了模型的理解和生成能力。
  • GPT-3 (2020): 模型规模达到1750B参数,在多项
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI架构师小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值