大规模语言模型从理论到实践 生成式预训练语言模型GPT
关键词:
大规模语言模型,生成式预训练,GPT,深度学习,自然语言处理,Transformer
1. 背景介绍
1.1 问题的由来
随着互联网的迅速发展,人类创造和积累了海量的文本数据。如何有效地利用这些数据,让计算机理解和生成人类语言,一直是自然语言处理(Natural Language Processing,NLP)领域的核心问题。近年来,随着深度学习技术的飞速发展,大规模语言模型(Large Language Models,LLMs)逐渐成为NLP领域的研究热点。其中,生成式预训练语言模型GPT系列在自然语言理解和生成方面取得了显著的成果,推动了NLP技术的快速发展。
1.2 研究现状
自从2018年GPT-1发布以来,GPT系列模型在多个NLP任务上取得了突破性的进展。以下是GPT系列模型的发展历程:
- GPT-1 (2018): 首个基于Transformer的生成式预训练语言模型,在多项NLP任务上取得了当时最佳的成果。
- GPT-2 (2019): 将模型规模扩大到1.5B参数,在多项NLP任务上取得了当时最佳的成果,并提出了“上下文窗口”的概念,进一步提升了模型的理解和生成能力。
- GPT-3 (2020): 模型规模达到1750B参数,在多项