大语言模型应用指南:图像生成
关键词:大语言模型,图像生成,文本到图像,生成对抗网络,变分自编码器,扩散模型
1. 背景介绍
1.1 问题的由来
图像生成作为计算机视觉和人工智能领域的一个重要分支,一直是众多学者和工程师关注的焦点。近年来,随着深度学习技术的快速发展,基于大语言模型(Large Language Model,LLM)的图像生成技术取得了突破性的进展。这些技术能够根据自然语言描述生成高质量的图像,为计算机视觉、艺术创作、虚拟现实等领域带来了革命性的变革。
1.2 研究现状
目前,基于LLM的图像生成技术主要分为以下几类:
- 文本到图像(Text-to-Image,T2I):通过将自然语言描述转换为图像,实现文本内容到视觉内容的转化。例如,DALL-E和GANdis等模型可以根据自然语言描述生成相应的图像。
- 生成对抗网络(Generative Adversarial Network,GAN):通过对抗训练的方式,让生成器和判别器相互竞争,从而生成与真实图像高度相似的图像。例如,CycleGAN和StyleGAN等模型可以生成高质量的图像。
- 变分自编码器(Variational Autoencoder,VAE):通过编码器和解码器学习图像的潜在表示,从而生成新的图像。例如,VAE-GAN和Wasserste