Python机器学习实战:强化学习(Reinforcement Learning)基础介绍
关键词:强化学习,机器学习,Q-learning,SARSA,深度强化学习,深度Q网络(DQN),策略梯度,环境交互
1. 背景介绍
1.1 问题的由来
强化学习(Reinforcement Learning, RL)作为机器学习的一个分支,近年来在游戏、机器人、推荐系统等领域取得了显著进展。它通过智能体与环境交互,学习如何在给定环境中做出最优决策,从而实现目标。与监督学习和无监督学习不同,强化学习注重智能体在动态环境中的长期交互和决策过程。
1.2 研究现状
强化学习的研究始于20世纪50年代,近年来随着深度学习技术的快速发展,深度强化学习(Deep Reinforcement Learning, DRL)逐渐成为研究热点。近年来,AlphaGo、OpenAI的Dota 2、自动驾驶等领域的突破性成果,充分展示了强化学习的巨大潜力。
1.3 研究意义
强化学习在以下领域具有重要的研究意义:
- 自动驾驶:自动驾驶汽车需要具备在复杂道路环境中做出最优决策的能力。
- 游戏AI:智能体在游戏环境中模拟人类玩家,进行策略学习。
- 推荐系统:通过强化学习,推荐系统可以更好地适应用户需求。
- 医疗诊断:辅助