大语言模型、自监督学习、Transformer、预训练、微调、文本生成、自然语言理解
1. 背景介绍
近年来,深度学习在自然语言处理 (NLP) 领域取得了显著进展,其中大语言模型 (LLM) 作为其重要代表,展现出强大的文本生成、翻译、摘要、问答等能力。这些模型通常拥有数十亿甚至千亿个参数,通过海量文本数据进行训练,学习了丰富的语言知识和模式。
传统的监督学习方法依赖于大量标注数据,但标注数据成本高昂且难以获取。自监督学习 (SSL) 作为一种新兴的训练 paradigm,通过设计巧妙的预训练任务,利用无标注文本数据进行模型训练,有效降低了对标注数据的依赖。
2. 核心概念与联系
自监督学习的核心思想是,通过设计与实际任务相关的预训练任务,让模型在无标注数据上学习到语言的潜在结构和规律。这些预训练任务通常是文本级别的,例如:
- Masked Language Modeling (MLM): 随机遮盖文本中的部分词,让模型预测被遮盖词的词语。
- Next Sentence Prediction (NSP): 判断两个句子是否连续,训练模型学习句子之间的语义关系。
- Sentence Order Prediction (SOP): 随机打乱句子中的词序,让模型预测正确的句子顺序。
这些预训练任务能够帮助模型学习到丰富的语言表示,为下游任务的微调提供强大的基础。
<