CNN实战案例:从图像识别到医疗诊断

深度学习算法


卷积神经网络(CNN)

以下是基于Spring Boot和卷积神经网络(CNN)的实例分类及核心实现方法,涵盖图像识别、医疗诊断、工业检测等多个领域。每个实例均提供关键代码片段和实现思路。

图像分类

1. MNIST手写数字识别


使用Spring Boot暴露REST API,调用Python训练的CNN模型(TensorFlow/Keras):

@PostMapping("/predict")
public String predictDigit(@RequestParam("file") MultipartFile file) {
    // 调用Python脚本或TensorFlow Java API运行模型
    ProcessBuilder pb = new ProcessBuilder("python", "mnist_cnn.py", file.getBytes());
    Process p = pb.start();
    // 解析输出结果
}
2. CIFAR-10物体分类


集成PyTorch模型到Spring Boot:

// 加载预训练模型
Module module = TorchScript.load("cifar10_cnn.pt");
// 图像预处理后调用模型
Tensor output = module.forward(IValue.from(inputTensor)).toTensor();
3. 花卉种类识别


使用Spring Boot + TensorFlow Serving部署:

# application.properties
tf.model.url=http://localhost:8501/v1/models/flower_cnn:predict
4. 狗品种识别


自定义CNN模型集成:

public class DogBreedCNN {
    @Bean
    public Sequential model() {
        return new Sequential()
            .add(new Conv2D(32, (3,3), "relu"))
            .add(new MaxPooling2D((2,2)));
    }
}

5. 车型识别


使用OpenCV预处理图像后调用CNN:

Mat image = Imgcodecs.imdecode(new Mat(file.getBytes()), Imgcodecs.IMREAD_COLOR);
Imgproc.resize(image, image, new Size(224, 224));

6. 时尚物品分类(Fashion-MNIST)


Keras模型转Java:

try (Graph graph = new Graph()) {
    graph.importGr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KENYCHEN奉孝

您的鼓励是我的进步源泉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值