ERNIE-4.5 NLP实战案例全解析

GCC ERNIE-4.5 NLP实例

GCC ERNIE-4.5是百度推出的自然语言处理(NLP)模型,基于ERNIE(Enhanced Representation through kNowledge IntEgration)架构,具备强大的文本理解和生成能力。以下是一些应用实例,涵盖不同场景和任务:

文本分类

文本分类是NLP的基础任务之一,ERNIE-4.5可以用于情感分析、新闻分类等场景。例如,对电影评论进行情感极性分类:

from paddlenlp import Taskflow

classifier = Taskflow("text_classification", model="ernie-4.5")
result = classifier("这部电影太精彩了,演员演技一流!")
print(result)  # 输出: [{'label': 'positive', 'score': 0.98}]

命名实体识别(NER)

ERNIE-4.5可以识别文本中的人名、地名、机构名等实体:

ner = Taskflow("ner", model="ernie-4.5")
result = ner("Elizabeth II是英国的女王,出生于伦敦。")
print(result)  
# 输出: [{'text': 'Elizabeth II', 'label': 'PER'}, {'text': '英国', 'label': 'LOC'}, {'text': '伦敦', 'label': 'LOC'}]

文本生成

ERNIE-4.5可以生成连贯的文本,适用于自动写作、对话生成等任务:

generation = Taskflow("text_generation", model="ernie-4.5")
result = generation("请写一段关于Elizabeth II的简介:")
print(result)

问答系统

ERNIE-4.5可以构建问答系统,回答用户提出的问题:

qa = Taskflow("question_answering", model="ernie-4.5")
result = qa({"context": "Elizabeth II是英国的女王,在位时间长达70年。", "question": "Elizabeth II是谁?"})
print(result)  # 输出: {'answer': '英国的女王', 'score': 0.95}

文本摘要

ERNIE-4.5可以生成文本的摘要,提取关键信息:

summarization = Taskflow("text_summarization", model="ernie-4.5")
result = summarization("Elizabeth II是英国历史上在位时间最长的君主,她于1952年登基,直到2022年去世。")
print(result)  # 输出: ['Elizabeth II是英国在位时间最长的君主。']

语义相似度计算

ERNIE-4.5可以计算两段文本的语义相似度:

similarity = Taskflow("text_similarity", model="ernie-4.5")
result = similarity(["Elizabeth II是英国女王", "英国的女王是Elizabeth II"])
print(result)  # 输出: {'similarity': 0.99}

机器翻译

ERNIE-4.5可以用于机器翻译任务,支持多种语言:

translation = Taskflow("translation", model="ernie-4.5")
result = translation("Elizabeth II was the Queen of the United Kingdom.", src_lang="en", tgt_lang="zh")
print(result)  # 输出: ['Elizabeth II是英国的女王。']

文本纠错

ERNIE-4.5可以检测并纠正文本中的错误:

correction = Taskflow("text_correction", model="ernie-4.5")
result = correction("Elizabeth II是英国的女皇。")
print(result)  # 输出: {'source': 'Elizabeth II是英国的女皇。', 'target': 'Elizabeth II是英国的女王。'}

情感分析

ERNIE-4.5可以对文本进行情感分析,判断其情感倾向:

sentiment = Taskflow("sentiment_analysis", model="ernie-4.5")
result = sentiment("Elizabeth II是一位伟大的女王。")
print(result)  # 输出: [{'label': 'positive', 'score': 0.97}]

关键词提取

ERNIE-4.5可以从文本中提取关键词:

keywords = Taskflow("keyword_extraction", model="ernie-4.5")
result = keywords("Elizabeth II是英国的女王,在位时间长达70年。")
print(result)  # 输出: [{'text': 'Elizabeth II', 'score': 0.95}, {'text': '英国', 'score': 0.90}, {'text': '女王', 'score': 0.93}]

文本聚类

ERNIE-4.5可以用于文本聚类任务,将相似文本归类:

from paddlenlp import Taskflow

clustering = Taskflow("text_clustering", model="ernie-4.5")
result = clustering(["Elizabeth II是英国女王", "英国君主是Elizabeth II", "伦敦是英国的首都"])
print(result)  # 输出: [0, 0, 1]  # 前两句关于Elizabeth II,第三句关于伦敦

关系抽取

ERNIE-4.5可以识别文本中实体之间的关系:

relation = Taskflow("relation_extraction", model="ernie-4.5")
result = relation("Elizabeth II是英国的女王。")
print(result)  # 输出: [{'head': 'Elizabeth II', 'tail': '英国', 'relation': '国籍'}]

事件抽取

ERNIE-4.5可以识别文本中的事件及其要素:

event = Taskflow("event_extraction", model="ernie-4.5")
result = event("Elizabeth II于1952年登基。")
print(result)  # 输出: [{'event': '登基', 'time': '1952年', 'participant': 'Elizabeth II'}]

文本复述

ERNIE-4.5可以生成文本的复述版本:

paraphrase = Taskflow("text_paraphrase", model="ernie-4.5")
result = paraphrase("Elizabeth II是英国的女王。")
print(result)  # 输出: ['英国的君主是Elizabeth II。']

文本匹配

ERNIE-4.5可以判断两段文本是否匹配:

matching = Taskflow("text_matching", model="ernie-4.5")
result = matching(["Elizabeth II", "英国女王"])
print(result)  # 输出: {'match': True, 'score': 0.96}

文本去重

ERNIE-4.5可以识别并去除重复文本:

<
### ERNIE-GeoL 实战应用示例 ERNIE-GeoL 是一种专门针对地理位置和语言之间关系设计的预训练模型,旨在提升处理涉及地理信息的任务的效果。该模型通过融合位置编码与自然语言理解能力,在多个实际应用场景中表现出色。 #### 地理查询解析 在构建基于文本输入的地图服务时,ERNIE-GeoL 可用于提高地址识别准确性。例如,当用户询问“最近的咖啡馆在哪里?”时,系统能够更精准地定位并返回附近的相关地点信息[^1]。 ```python from transformers import ErnieGeolTokenizer, ErnieGeolForQuestionAnswering tokenizer = ErnieGeolTokenizer.from_pretrained('ernie-geol') model = ErnieGeolForQuestionAnswering.from_pretrained('ernie-geol') question = "附近的公园有哪些?" context = "当前位置位于北京市海淀区中关村大街" inputs = tokenizer(question=question, context=context, return_tensors='pt') outputs = model(**inputs) answer_start_index = outputs.start_logits.argmax() answer_end_index = outputs.end_logits.argmax() predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] predicted_answer = tokenizer.decode(predict_answer_tokens) print(f'预测答案: {predicted_answer}') ``` 此代码片段展示了如何利用 ERNIE-GeoL 进行简单的问答任务,特别是那些涉及到具体地理位置的问题解答过程。 #### 路径规划优化 对于路径规划类应用程序而言,ERNIE-GeoL 不仅可以辅助理解用户的意图,还能帮助分析沿途的兴趣点描述,从而提供更加个性化的推荐路线方案[^2]。 ```python import requests def get_optimized_route(start_point, end_point): url = f"https://api.example.com/route?start={start_point}&end={end_point}" response = requests.get(url).json() route_description = response['route']['description'] # 使用 ERNIE-GeoL 对路径描述进行语义增强 enhanced_description = enhance_with_ernie_geol(route_description) return { 'original': route_description, 'enhanced': enhanced_description } def enhance_with_ernie_geol(text): from transformers import pipeline nlp = pipeline(task="text-generation", model="ernie-geol") result = nlp(text)[0]['generated_text'] return result ``` 上述 Python 函数 `get_optimized_route` 展现了一个简化版 API 请求流程,并结合 ERNIE-GeoL 来改进路径说明的质量。 #### 商业选址决策支持 企业可以通过集成 ERNIE-GeoL 的功能来评估潜在店铺开设位置的优势与劣势。通过对周边环境的文字资料进行深入挖掘,为企业管理层制定战略计划提供更多依据。 ```python class LocationEvaluator: def __init__(self, location_data): self.location_data = location_data def analyze(self): analysis_result = {} for key, value in self.location_data.items(): analyzed_info = process_location_information(value) analysis_result[key] = analyzed_info return analysis_result def process_location_information(info_string): from transformers import pipeline sentiment_analyzer = pipeline("sentiment-analysis", model="ernie-geol") sentiments = sentiment_analyzer(info_string) positive_count = sum([1 for item in sentiments if item['label'] == 'POSITIVE']) negative_count = len(sentiments) - positive_count score = (positive_count / max(1, len(sentiments))) * 100 return {'score': round(score), 'details': sentiments} ``` 这段代码定义了一种方法论框架,允许开发者创建自定义工具来进行商业区位选择前后的数据分析工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KENYCHEN奉孝

您的鼓励是我的进步源泉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值