6.2 训练策略
在训练文生图大模型的过程中,采用适当的训练策略至关重要,这些策略有助于提高模型的性能、稳定性和泛化能力。通过训练策略可以有效地提升文生图大模型的性能,使其能够更好地处理复杂的文生图任务。
6.2.1 预训练与微调
预训练(Pre-training)是指在大规模单一模态数据上进行预训练,这种方法利用大规模数据的优势,为模型提供了良好的初始参数。例如在大量的图像上预训练一个卷积神经网络(CNN),或者在大量的文本上预训练一个语言模型(如BERT、GPT)。
微调(Fine-tuning)是指在文生图数据上对预训练的模型进行微调,以适应特定的任务。在微调过程通常使用较小的学习率,以避免模型参数的剧烈变化。
请看下面的实例,展示了实现了一个文生图模型的训练过程。该模型结合了图像和文本信息,使用预训练的ResNet模型提取图像特