结尾给完整代码
除了网络设计方面,其他部分和全连接神经网络一样没差别,就不过多讲述了。
网络部分
这里我们设计的网络结构就是
''' 定义神经网络 类的继承这种方式'''
class CNN(nn.Module): #通过调用类的形式来使用神经网络,神经网络的模型,nn.mdoule
def __init__(self): #输入64*1*28*28大小
super(CNN,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d( #2d一般用于图像,3d用于视频数据(多一个时间维度),1d一般用于结构化的序列数据
in_channels=1, # 图像通道个数,1表示灰度图(确定了卷积核 组中的个数),
out_channels=16, # 要得到多少个特征图,卷积核的个数
kernel_size=3, # 卷积核人小,5*5
stride=1, # 步长
padding=1 # 填充值
), #输出的特征图为28*28输出完整数据:64*16*28*28
nn.ReLU(), #relu层,不会改变特征图的大小,输出完整数据:64*16*28*28
nn.MaxPool2d(kernel_size=2), #进行池化操作(2x2 区域),输出结果为:64*16*14*14
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 16, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(16, 32, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), )
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(),
)
self.out = nn.Linear(64*7*7,10) #全连接层得到的结果
def forward(self,x): #前向传播,你得告诉它 数据的流向 是神经网络层连接起来,函数名称不能改
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x) # [64,64,7,7]
x = x.view(x.size(0), -1) # view和reshape是一样的作用,但此处是tensor形式 x.size(0)=64
output = self.out(x)
return output
这里我们还引入了Sequential,把我们网络分成一个一个的小组件来进行训练,更可观一点。
关于步长
注意这里optimizer = torch.optim.Adam(model.parameters(),lr=0.0005)
如果步长太大,可能会导致训练多轮也不会达到最优状态,如果步长太小,会导致我们训练轮数太少,不会达到我们的预期,例如我们取lr=0.000001,下降太慢了,但是如果下降10000轮之后,所达到的结果,可能就会极高。
训练结果
我们仅仅训练了一次,准确率就达到了百分之97.56。相比与全连接的网络,需要训练10轮才能达到这种效果。
如果我们训练15轮之后,我们的准确率就会达到了百分之99.14,可见非常高。
完整代码
# import torch
# print(torch.__version__)
'''
MNIST包含70000张手写数字图像:60000用于训练,10000用于测试
图像是灰度的,28×28像素的,并且居中的,以减少预处理和加快运行
'''
import torch
from torch import nn #导入神经网络模块
from torch.utils.data import DataLoader #数据包管理工具,打包数据
from torchvision import datasets #封装了很多与图像相关的模型,数据集
from torchvision.transforms import ToTensor #数据转换,张量,将其他类型的数据转换为tensor张量,numpy array
'''下载训练数据集(包含训练图片+标签)'''
training_data = datasets.MNIST( #跳转到函数的内部源代码,pycharm按下ctrl + 鼠标点击
root="data", #表示下载的手写数字 到哪个路径。60000
train=True, #读取下载后的数据中的训练集
download=True, #如果你之前已经下载过了,就不用下载
transform=ToTensor(), #张量,图片是不能直接传入神经网络模型
) #对于pytorch库能够识别的数据一般是tensor张量
'''下载测试数据集(包含训练图片+标签)'''
test_data = datasets.MNIST( #跳转到函数的内部源代码,pycharm按下ctrl + 鼠标点击
root="data", #表示下载的手写数字 到哪个路径。60000
train=False, #读取下载后的数据中的训练集
download=True, #如果你之前已经下载过了,就不用下载
transform=ToTensor(), #Tensor是在深度学习中提出并广泛应用的数据类型
) #Numpy数组只能在CPU上运行。Tensor可以在GPU上运行。这在深度学习应用中可以显著提高计算速度。
print(len(training_data))
# '''展示手写数字图片,把训练集中的59000张图片展示'''
# from matplotlib import pyplot as plt
# figure = plt.figure()
# for i in range(9):
# img,label = training_data[i+59000] #提取第59000张图片
#
# figure.add_subplot(3,3,i+1) #图像窗口中创建多个小窗口,小窗口用于显示图片
# plt.title(label)
# plt.axis("off") #plt.show(I) 显示矢量
# plt.imshow(img.squeeze(),cmap="gray") #plt.imshow()将Numpy数组data中的数据显示为图像,并在图形窗口中显示
# a = img.squeeze() #img.squeeze()从张量img中去掉维度为1的,如果该维度的大小不为1,则张量不会改变
# plt.show()
'''创建数据DataLoader(数据加载器)'''
# batch_size:将数据集分为多份,每一份为batch_size个数据
# 优点:可以减少内存的使用,提高训练速度
train_dataloader = DataLoader(training_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
for X,y in test_dataloader:#X是表示打包好的每一个数据包
print(f"Shape of X[N,C,H,W]:{X.shape}")#
print(f"Shape of y: f{y.shape} {y.dtype}")
break
'''判断当前设备是否支持GPU,其中mps是苹果m系列芯片的GPU'''
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device") #字符串的格式化,CUDA驱动软件的功能:pytorch能够去执行cuda的命令
# 神经网络的模型也需要传入到GPU,1个batch_size的数据集也需要传入到GPU,才可以进行训练
''' 定义神经网络 类的继承这种方式'''
class CNN(nn.Module): #通过调用类的形式来使用神经网络,神经网络的模型,nn.mdoule
def __init__(self): #输入64*1*28*28大小
super(CNN,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d( #2d一般用于图像,3d用于视频数据(多一个时间维度),1d一般用于结构化的序列数据
in_channels=1, # 图像通道个数,1表示灰度图(确定了卷积核 组中的个数),
out_channels=16, # 要得到多少个特征图,卷积核的个数
kernel_size=3, # 卷积核人小,5*5
stride=1, # 步长
padding=1 # 填充值
), #输出的特征图为28*28输出完整数据:64*16*28*28
nn.ReLU(), #relu层,不会改变特征图的大小,输出完整数据:64*16*28*28
nn.MaxPool2d(kernel_size=2), #进行池化操作(2x2 区域),输出结果为:64*16*14*14
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 16, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(16, 32, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), )
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(),
)
self.out = nn.Linear(64*7*7,10) #全连接层得到的结果
def forward(self,x): #前向传播,你得告诉它 数据的流向 是神经网络层连接起来,函数名称不能改
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x) # [64,64,7,7]
x = x.view(x.size(0), -1) # view和reshape是一样的作用,但此处是tensor形式 x.size(0)=64
output = self.out(x)
return output
model = CNN().to(device) #把刚刚创建的模型传入到GPU
print(model)
def train(dataloader,model,loss_fn,optimizer):
model.train() #告诉模型,我要开始训练,模型中w进行随机化操作,已经更新w,在训练过程中,w会被修改的
# pytorch提供2种方式来切换训练和测试的模式,分别是:model.train() 和 mdoel.eval()
# 一般用法是:在训练开始之前写上model.train(),在测试时写上model.eval()
batch_size_num = 1
for X,y in dataloader: #其中batch为每一个数据的编号
X,y = X.to(device),y.to(device) #把训练数据集和标签传入cpu或GPU
pred = model.forward(X) # .forward可以被省略,父类种已经对此功能进行了设置
loss = loss_fn(pred,y) # 通过交叉熵损失函数计算损失值loss
# Backpropagation 进来一个batch的数据,计算一次梯度,更新一次网络
optimizer.zero_grad() # 梯度值清零
loss.backward() # 反向传播计算得到每个参数的梯度值w
optimizer.step() # 根据梯度更新网络w参数
loss_value = loss.item() # 从tensor数据种提取数据出来,tensor获取损失值
if batch_size_num %100 ==0:
print(f"loss: {loss_value:>7f} [number:{batch_size_num}]")
batch_size_num += 1
def Test(dataloader,model,loss_fn):
size = len(dataloader.dataset) #10000
num_batches = len(dataloader) # 打包的数量
model.eval() #测试,w就不能再更新
test_loss,correct =0,0
with torch.no_grad(): #一个上下文管理器,关闭梯度计算。当你确认不会调用Tensor.backward()的时候
for X,y in dataloader:
X,y = X.to(device),y.to(device)
pred = model.forward(X)
test_loss += loss_fn(pred,y).item() #test_loss是会自动累加每一个批次的损失值
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
# a = (pred.argmax(1) == y) #dim=1表示每一行中的最大值对应的索引号,dim=0表示每一列中的最大值对应的索引号
# b = (pred.argmax(1) == y).type(torch.float)
test_loss /= num_batches #能来衡量模型测试的好坏
correct /= size #平均的正确率
print(f"Test result: \n Accuracy:{(100*correct)}%, Avg loss:{test_loss}")
loss_fn = nn.CrossEntropyLoss() #创建交叉熵损失函数对象,因为手写字识别一共有十种数字,输出会有10个结果
optimizer = torch.optim.Adam(model.parameters(),lr=0.0005) #0.01创建一个优化器,SGD为随机梯度下降算法
# # params:要训练的参数,一般我们传入的都是model.parameters()
# # lr:learning_rate学习率,也就是步长
# # loss表示模型训练后的输出结果与样本标签的差距。如果差距越小,就表示模型训练越好,越逼近真实的模型
# 只跑一轮(可尝试)
# train(train_dataloader,model,loss_fn,optimizer) #训练1次完整的数据。多轮训练
# Test(test_dataloader,model,loss_fn)
epochs = 10
for t in range(epochs):
print(f"epoch {t+1}\n---------------")
train(train_dataloader,model,loss_fn,optimizer)
print("Done!")
Test(test_dataloader,model,loss_fn)