什么是适配器微调(Adapter tuning)

适配器微调(Adapter Tuning)

适配器微调(Adapter Tuning)是一种参数高效微调(Parameter-Efficient Fine-Tuning, PEFT) 方法,用于在不修改预训练模型全部参数的情况下,将模型适配到特定任务或数据集。它的核心思想是在预训练模型的结构中插入小型的、可训练的神经网络模块(称为适配器,Adapters),只更新这些适配器的参数,而冻结原始模型的参数,从而以较低的计算和存储成本实现高效微调。

以下是对适配器微调的详细解释:


1. 适配器微调的定义与原理

适配器微调通过在预训练模型(如 Transformer 模型)的每一层中插入轻量级的适配器模块来实现任务适配。这些适配器模块通常是小型的全连接神经网络,参数量远小于原始模型。训练时,只优化适配器的参数,而预训练模型的权重保持不变。这种方法特别适合资源受限的场景或需要快速适配多个任务的情况。

工作原理

  • 插入适配器:在 Transformer 模型的每一层(通常在注意力模块或前馈网络(FFN)之后)插入适配器模块。
  • 适配器结构:适配器通常采用瓶颈结构(bottleneck architecture),包括:
    • 一个降维层(down-projection),将输入维度压缩到较低维度。
    • 一个非线性激活函数(如 ReLU)。
    • 一个升维层(up-projection),将维度恢复到原始大小。
    • 可选的残差连接(residual connection),将适配器的输出与输入相加。
  • 训练:冻结预训练模型的原始参数,仅训练适配器的参数。
  • 推理:适配器模块与原始模型一起运行,处理输入数据,但由于适配器参数量少,额外计算开销有限。

数学表示
假设输入为 x x x,适配器的计算过程可以表示为:
h = x + Up ( σ ( Down ( x ) ) ) h = x + \text{Up}(\sigma(\text{Down}(x))) h=x+Up(σ(Down(x)))
其中:

  • Down ( ⋅ ) \text{Down}(\cdot) Down() 是降维层(线性变换)。
  • σ ( ⋅ ) \sigma(\cdot) σ() 是非线性激活函数(如 ReLU)。
  • Up ( ⋅ ) \text{Up}(\cdot) Up() 是升维层(线性变换)。
  • x + ⋅ x + \cdot x+ 表示残差连接。

2. 适配器微调的优点

  1. 参数效率高

    • 适配器模块的参数量通常只占预训练模型总参数的 0.5%-10%,显著降低了存储和计算需求。
    • 例如,对于一个 7B 参数的模型,适配器可能只增加几百万个参数。
  2. 模块化设计

    • 每个任务可以训练一个独立的适配器,保存为小文件(几 MB 到几十 MB),便于存储和切换。
    • 适配器可以动态插入或移除,适合多任务场景。
  3. 性能接近全参数微调

    • 适配器微调在许多任务上的性能可以媲美全参数微调,尤其是在自然语言处理(NLP)和计算机视觉任务中。
  4. 保留预训练知识

    • 冻结原始模型参数有助于保留预训练模型的泛化能力,减少过拟合风险。
  5. 灵活性

    • 适配器可以插入到模型的不同位置(注意力层、FFN 层等),并支持多种结构设计。

3. 适配器微调的缺点

  1. 推理延迟

    • 适配器模块会引入额外的计算层,导致推理时延迟略有增加(通常较小,但对延迟敏感的场景需注意)。
  2. 超参数调优

    • 适配器的设计(如瓶颈维度、插入位置)需要调优,可能增加实验复杂性。
  3. 任务适配性

    • 对于某些复杂任务或与预训练数据差异较大的任务,适配器微调可能需要更大的适配器规模才能达到理想性能。

4. 适配器微调的代表性实现

以下是几种常见的适配器设计和相关工作:

  1. Houlsby Adapter(Houlsby et al., 2019):

    • 在 Transformer 的每一层插入两个适配器:一个在多头注意力(Multi-Head Attention)之后,一个在前馈网络(FFN)之后。
    • 使用瓶颈结构,瓶颈维度通常为原始维度的 1/8 或更小。
    • 广泛应用于 NLP 任务,如文本分类、机器翻译等。
  2. Pfeiffer Adapter(Pfeiffer et al., 2020):

    • 简化设计,仅在 FFN 之后插入一个适配器。
    • 参数效率更高,推理开销更小。
    • 适合资源受限场景,同时保持较好的性能.
  3. AdapterHub

    • 一个开源框架,支持在预训练 Transformer 模型(如 BERT、RoBERTa)中插入和训练适配器。
    • 提供多种适配器配置,方便用户实验和部署。
  4. Compacter

    • 一种改进的适配器方法,使用低秩分解和参数共享技术进一步减少参数量。
    • 适合超大规模模型的微调。

5. 适配器微调的应用场景

适配器微调广泛应用于以下场景:

  • 多任务学习:为不同任务训练独立的适配器,共享同一预训练模型。
  • 跨语言迁移:将预训练模型适配到低资源语言的任务。
  • 领域适配:将通用模型适配到特定领域(如医疗、法律)。
  • 资源受限环境:在边缘设备或低内存设备上部署模型。
  • 快速原型开发:快速测试模型在特定任务上的表现,而无需全参数微调。

6. 适配器微调的代码示例

以下是一个使用 Hugging Face 的 transformers 库和 adapters 库在 BERT 模型上为文本分类任务实现适配器微调的示例。示例基于 GLUE 数据集的 SST-2(情感分类)任务。

from transformers import AutoModelForSequenceClassification, AutoTokenizer
from adapters import AutoAdapterModel, AdapterTrainer
from transformers import TrainingArguments
from datasets import load_dataset

# 1. 加载预训练模型和分词器
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoAdapterModel.from_pretrained(model_name)

# 2. 添加适配器
model.add_adapter("sst2_adapter")

# 为分类任务添加分类头(2 分类:正向/负向)
model.add_classification_head("sst2_adapter", num_labels=2)

# 激活适配器
model.set_active_adapters("sst2_adapter")
model.train_adapter("sst2_adapter")  # 冻结原始模型参数,启用适配器训练

# 3. 加载数据集并预处理
dataset = load_dataset("glue", "sst2")
def preprocess_function(examples):
    return tokenizer(examples["sentence"], padding="max_length", truncation=True, max_length=128)

encoded_dataset = dataset.map(preprocess_function, batched=True)
train_dataset = encoded_dataset["train"]
eval_dataset = encoded_dataset["validation"]

# 4. 设置训练参数
training_args = TrainingArguments(
    output_dir="./adapter_output",
    num_train_epochs=3,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
)



# 5. 初始化适配器训练器
trainer = AdapterTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    compute_metrics=lambda eval_pred: {"accuracy": (eval_pred.predictions.argmax(1) == eval_pred.label_ids).mean()},
)

# 6. 训练适配器
trainer.train()

# 7. 保存适配器
model.save_adapter("./sst2_adapter", "sst2_adapter")

# 8. 推理示例
text = "This movie is fantastic!"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
outputs = model(**inputs)
logits = outputs.logits
prediction = logits.argmax(-1).item()
print(f"Prediction: {'Positive' if prediction == 1 else 'Negative'}")

代码说明

  • 模型和适配器:使用 bert-base-uncased 作为预训练模型,添加适配器。
  • 数据集:使用 GLUE 的 SST-2 数据集(二分类情感分析)。
  • 训练:仅训练适配器参数和分类头,冻结 BERT 的原始参数。
  • 保存和推理:训练完成后,适配器权重保存为小文件(几 MB),可用于推理。
  • 依赖:需要安装 transformers, adapters, 和 datasets 库(pip install transformers adapters datasets)。

运行结果

  • 适配器微调通常只需 1-2 GB 的 GPU 内存(远低于全参数微调的 10+ GB)。
  • 训练后的适配器在 SST-2 数据集上可达到 ~90% 的准确率,接近全参数微调。

7. 与其他 PEFT 方法的对比

方法参数效率推理延迟性能(相对全参数微调)模块化设计
Adapter Tuning轻微增加接近
LoRA极高无增加接近
Prompt Tuning极高无增加稍逊
Prefix Tuning极高无增加稍逊
  • 与 LoRA 相比:适配器微调引入额外计算层(推理延迟略高),但模块化设计更灵活,适合多任务场景。LoRA 更适合单一任务的高效适配。
  • 与 Prompt Tuning 相比:适配器微调通常性能更稳定,适合复杂任务,但参数量略高。
  • 与全参数微调相比:适配器微调显著降低计算和存储成本,但在某些极端任务上可能略逊。

8. 总结

适配器微调是一种高效、灵活的微调方法,通过在预训练模型中插入小型适配器模块实现任务适配。它在参数效率、模块化设计和性能之间取得了良好平衡,特别适合多任务学习、跨语言迁移和资源受限场景。如果你有具体的任务(如适配 BERT 进行其他任务)或想深入探讨实现细节(如调整适配器配置或优化超参数),请告诉我,我可以进一步提供帮助!

9. 学习网站

AdapterHub:https://adapterhub.ml
AdapterHub Documentation:https://docs.adapterhub.ml/index.html
Using Adapters at Hugging Face:https://huggingface.co/docs/hub/adapters

### Adapter 微调概述 Adapter微调是一种参数高效的迁移学习方法,通过在预训练模型中插入小型适配器模块来适应特定下游任务。这种方法允许保留大部分原始权重不变,仅更新少量新引入的参数[^1]。 ### 实现方法 为了实现Adapter微调,在原有网络结构基础上增加额外的小型神经网络作为adapter层。这些adapter通常由一层或多层全连接层组成,并放置于编码器各层内部的关键位置。具体来说: - **架构设计**:选择合适的层次加入adapter; - **初始化策略**:采用随机初始化或其他更优方案; - **正则化处理**:防止过拟合现象发生; ```python class BertModelWithAdapters(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) # Add adapters to each layer of the transformer encoder for i in range(len(self.bert.encoder.layer)): adapter_layer = nn.Sequential( nn.Linear(config.hidden_size, 64), nn.ReLU(), nn.Linear(64, config.hidden_size) ) setattr(self.bert.encoder.layer[i], 'adapter', adapter_layer) def forward(...): outputs = self.bert(...) ... ``` ### 教程指南 对于希望深入了解并掌握这一技术的研究人员而言,建议按照如下路径逐步深入研究: - 阅读经典论文《Parameter-Efficient Transfer Learning for NLP》以理解理论基础; - 学习开源项目Hugging Face Transformers中的`peft`库文档,该库提供了多种类型的adapters实现方式; - 尝试基于现有框架完成简单的实验案例,比如情感分类或命名实体识别等自然语言处理任务; ### 最佳实践 当应用Adapter微调时,需注意以下几点最佳实践经验: - 对不同规模的数据集合理设置超参,包括但不限于batch size、learning rate等; - 使用早停法(Early Stopping)监控验证集性能变化趋势,及时终止效果不佳的试验; - 定期保存checkpoint以便后续恢复训练过程或对比分析多个版本间的差异;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值