VeRA(Vector-based Random Matrix Adaptation,基于向量的随机矩阵适应) 是一种用于高效微调大语言模型的参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法。VeRA 通过在预训练权重矩阵上引入基于向量的随机矩阵适配机制,显著减少微调所需的参数量,同时保持模型性能接近全参数微调。VeRA 由 Kopiczko 等人在 2024 年提出,旨在解决 LoRA(Low-Rank Adaptation)等方法在参数效率和计算开销上的局限性,特别适合超大规模模型的微调。
以下是对 VeRA 的详细解释:
1. VeRA 的定义与原理
VeRA 是对 LoRA 的一种改进,基于低秩更新框架,但在更新矩阵的设计上引入了随机投影和向量驱动的适配机制。与 LoRA 通过训练低秩矩阵 A A A 和 B B B 来更新权重 Δ W = A ⋅ B \Delta W = A \cdot B ΔW=A⋅B 不同,VeRA 使用随机初始化的矩阵结合少量可训练向量来生成更新矩阵,从而大幅减少可训练参数量。
工作原理:
- 向量驱动的低秩更新:
- 对于预训练权重矩阵
W
∈
R
d
×
k
W \in \mathbb{R}^{d \times k}
W∈Rd×k,VeRA 定义更新矩阵为:
Δ W = λ ⋅ ( R ⋅ v ) ⋅ B \Delta W = \lambda \cdot (R \cdot v) \cdot B ΔW=λ⋅(R⋅v)⋅B
其中:- R ∈ R d × r R \in \mathbb{R}^{d \times r} R∈Rd×r 是一个随机初始化的矩阵(固定不变,不参与训练)。
- v ∈ R r v \in \mathbb{R}^{r} v∈Rr 是一个可训练的向量,控制随机矩阵的加权。
- B ∈ R r × k B \in \mathbb{R}^{r \times k} B∈Rr×k 是另一个低秩矩阵(可训练)。
- λ \lambda λ 是一个可训练的缩放因子,用于调整更新幅度。
- 仅训练 v v v、 B B B 和 λ \lambda λ,而 R R R 保持固定,显著减少参数量。
- 对于预训练权重矩阵
W
∈
R
d
×
k
W \in \mathbb{R}^{d \times k}
W∈Rd×k,VeRA 定义更新矩阵为:
- 随机投影:
- R R R 是一个随机矩阵(如从高斯分布采样),通过随机投影将高维权重映射到低维空间。
- 这种设计灵感来源于随机矩阵理论,允许 VeRA 在极低参数量下捕捉权重更新的关键方向。
- 参数共享:
- VeRA 可选择在多个权重矩阵间共享随机矩阵 R R R 或向量 v v v,进一步减少参数量。
- 例如,Transformer 的查询矩阵 W q W_q Wq 和值矩阵 W v W_v Wv 可共享同一 R R R。
- 训练:
- 冻结预训练权重 W W W,仅优化 v v v、 B B B 和 λ \lambda λ。
- 使用标准优化器(如 AdamW)在目标任务数据集上微调。
- 推理:
- 推理时,低秩更新可合并到原始权重:
W ′ = W + λ ⋅ ( R ⋅ v ) ⋅ B W' = W + \lambda \cdot (R \cdot v) \cdot B W′=W+λ⋅(R⋅v)⋅B - 合并后无额外计算开销,推理延迟与原始模型相同。
- 推理时,低秩更新可合并到原始权重:
参数效率:
- VeRA 的可训练参数量远少于 LoRA。例如,在秩 r = 8 r = 8 r=8 的情况下,VeRA 仅需训练 r + r ⋅ k + 1 r + r \cdot k + 1 r+r⋅k+1 个参数(向量 v v v、矩阵 B B B 和缩放因子 λ \lambda λ),而 LoRA 需训练 d ⋅ r + r ⋅ k d \cdot r + r \cdot k d⋅r+r⋅k。
- 对于一个 7B 参数模型,VeRA 的参数量可能仅为 LoRA 的 10%-20%(几 KB 到 MB)。
2. VeRA 的优点
-
极高的参数效率:
- VeRA 通过随机矩阵和少量可训练向量大幅减少参数量,存储需求极低,适合大规模模型和多任务部署。
-
性能接近全参数微调:
- 在 NLP(GLUE、SQuAD)、生成任务和对话任务上,VeRA 性能接近全参数微调,优于或媲美 LoRA。
-
推理开销低:
- 低秩更新可合并到原始权重,推理时无额外计算层,延迟几乎不变。
-
模块化设计:
- 不同任务可训练独立的 VeRA 模块,共享同一预训练模型,易于切换和扩展。
-
训练高效:
- 由于可训练参数少,VeRA 的训练内存和时间成本低于 LoRA,尤其适合单 GPU 微调。
-
鲁棒性:
- 随机投影机制使 VeRA 对初始化敏感性较低,训练更稳定。
3. VeRA 的缺点
-
训练复杂性略高:
- 随机矩阵的设计和向量驱动机制增加实现复杂性,需额外代码支持。
-
随机矩阵依赖:
- 性能可能依赖于随机矩阵 R R R 的质量(如分布选择),需仔细设计。
-
任务适配性有限:
- 在某些简单任务上,VeRA 的超高参数效率可能导致容量不足,性能略逊于 LoRA。
-
实验验证较新:
- 作为 2024 年提出的方法,VeRA 的广泛应用和长期稳定性尚需更多验证。
-
超参数调优:
- 需调整秩 r r r、缩放因子 λ \lambda λ 和随机矩阵的初始化方式,增加实验复杂性。
4. VeRA 的代表性实现
-
VeRA(Kopiczko et al., 2024):
- 最早提出 VeRA 的方法,应用于 LLaMA 模型,展示了在低参数量下的高性能。
- 在 Commonsense Reasoning、数学推理和对话任务上优于 LoRA。
-
Integration with Frameworks:
- VeRA 可通过扩展 Hugging Face 的
peft
库实现,部分开源项目正在整合。 - 未来可能成为标准 PEFT 方法之一。
- VeRA 可通过扩展 Hugging Face 的
-
Related Variants:
- LoRA:基础低秩适配,VeRA 在其上引入随机投影。
- QLoRA:结合量化和 LoRA,VeRA 可与其结合以进一步降低内存。
- AdaLoRA:自适应秩分配,VeRA 可借鉴其动态性。
5. VeRA 的应用场景
VeRA 特别适合以下场景:
- 超大模型微调:适配 10B-100B 参数的模型(如 LLaMA、GPT-3),在单 GPU 上实现高效微调。
- 多任务部署:为不同任务训练小体积的 VeRA 模块,降低存储和切换成本。
- 资源受限环境:在边缘设备或低内存环境中微调和部署模型。
- 个性化适配:为特定用户或领域(如医疗、法律)定制模型。
- 快速原型开发:快速测试模型在不同任务上的表现,减少参数调优成本。
6. VeRA 的代码示例
以下是一个使用 Python 和 Hugging Face 的 transformers
库实现 VeRA 的简化示例,基于 LLaMA-7B 模型为 GLUE 的 SST-2(情感分类)任务进行微调。示例模拟 VeRA 的随机矩阵机制,实际实现需更复杂的随机投影逻辑。
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import LoraConfig, get_peft_model
from transformers import TrainingArguments, Trainer
from datasets import load_dataset
import torch
import torch.nn as nn
# 自定义 VeRA 模块(简化版)
class VeRALayer(nn.Module):
def __init__(self, in_features, out_features, r=8):
super().__init__()
self.r = r
# 随机矩阵 R(固定不变)
self.R = nn.Parameter(torch.randn(in_features, r), requires_grad=False)
# 可训练向量 v
self.v = nn.Parameter(torch.zeros(r))
# 可训练矩阵 B
self.B = nn.Parameter(torch.zeros(r, out_features))
# 可训练缩放因子 lambda
self.lmbda = nn.Parameter(torch.tensor(1.0))
def forward(self, x):
# 计算 VeRA 更新:lambda * (R * v) * B
delta_W = self.lmbda * (self.R @ self.v).unsqueeze(-1) @ self.B.unsqueeze(0)
return x @ delta_W
# 替换模型的线性层为 VeRA 层(伪代码)
def apply_vera(model, r=8):
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
vera_layer = VeRALayer(module.in_features, module.out_features, r)
setattr(model, name, vera_layer)
return model
# 1. 加载预训练模型和分词器
model_name = "meta-llama/Llama-2-7b-hf" # 假设使用 LLaMA-2-7B
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=2,
device_map="auto",
)
# 2. 应用 VeRA(简化)
model = apply_vera(model, r=8)
# 3. 配置 LoRA(作为对比,实际 VeRA 不需 LoRA 配置)
lora_config = LoraConfig(
task_type="SEQ_CLS",
r=8,
lora_alpha=16,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"],
)
model = get_peft_model(model, lora_config) # 仅用于兼容,实际应直接用 VeRA
# 4. 加载数据集并预处理
dataset = load_dataset("glue", "sst2")
def preprocess_function(examples):
return tokenizer(examples["sentence"], padding="max_length", truncation=True, max_length=128)
encoded_dataset = dataset.map(preprocess_function, batched=True)
train_dataset = encoded_dataset["train"].select(range(1000)) # 使用部分数据
eval_dataset = encoded_dataset["validation"]
# 5. 设置训练参数
training_args = TrainingArguments(
output_dir="./vera_output",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
# 6. 初始化训练器
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=lambda eval_pred: {"accuracy": (eval_pred.predictions.argmax(1) == eval_pred.label_ids).mean()},
)
# 7. 训练 VeRA
trainer.train()
# 8. 保存 VeRA 参数
model.save_pretrained("./vera_model")
# 9. 推理示例
text = "This movie is fantastic!"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128).to("cuda")
outputs = model(**inputs)
logits = outputs.logits
prediction = logits.argmax(-1).item()
print(f"Prediction: {'Positive' if prediction == 1 else 'Negative'}")
代码说明:
- VeRA 模块:自定义
VeRALayer
模拟随机矩阵 R R R、可训练向量 v v v、矩阵 B B B 和缩放因子 λ \lambda λ。 - 模型和 VeRA:加载 LLaMA-2-7B 模型,替换线性层为 VeRA 层(实际需适配 Transformer 模块)。
- 数据集:使用 GLUE 的 SST-2 数据集(二分类情感分析),仅用部分数据以加快训练。
- 训练:优化 VeRA 参数( v v v、 B B B、 λ \lambda λ),冻结其他权重。
- 保存和推理:训练后的 VeRA 参数保存为小文件(几 MB),推理时支持标准前向传播。
- 依赖:需要安装
transformers
,peft
, 和datasets
库(pip install transformers peft datasets
)。
运行结果:
- VeRA 微调可在 24 GB GPU 上运行 7B 模型,内存占用 ~10-15 GB,参数量远少于 LoRA。
- 训练后,模型在 SST-2 数据集上可达到 ~91%-94% 的准确率,接近全参数微调。
注:此代码为简化实现,实际 VeRA 需要更复杂的随机投影和参数共享逻辑。开源实现可能在未来集成到 peft
库中。
7. 与其他 PEFT 方法的对比
方法 | 参数效率 | 推理延迟 | 内存需求 | 性能(相对全参数微调) | 适用场景 |
---|---|---|---|---|---|
VeRA | 极高 | 无增加 | 低 | 接近 | 超大模型微调、多任务部署 |
LoRA | 极高 | 无增加 | 中等 | 接近 | 大模型适配、个性化 |
QLoRA | 极高 | 无增加 | 极低 | 接近 | 超大模型微调、资源受限 |
AdaLoRA | 极高 | 无增加 | 中等 | 接近 | 复杂任务、大模型适配 |
LongLoRA | 极高 | 无增加 | 中等 | 接近 | 长上下文任务、大模型适配 |
- 与 LoRA 相比:VeRA 参数量更少(通过随机矩阵和向量驱动),训练更高效,但实现复杂性略高。
- 与 QLoRA 相比:VeRA 不依赖量化,内存需求高于 QLoRA,但无需量化误差,性能更稳定。
- 与 AdaLoRA 相比:VeRA 的随机投影机制更节省参数,而 AdaLoRA 更适合动态秩分配。
- 与 LongLoRA 相比:VeRA 专注于参数效率,LongLoRA 专为长上下文优化。
8. 澄清其他可能的 “VeRA” 含义
在机器学习和 AI 领域,“VeRA” 可能被误解为其他概念。以下是可能的混淆点,基于网络信息:
- vera.ai:一个欧盟资助的 AI 项目(VERification Assisted by AI),专注于对抗在线虚假信息,与 VeRA 无关。
- VERA 2.0:一个企业通信虚拟助手,使用 AI 和机器学习处理多维数据,与 VeRA 无关。
- VERA(Virtual Ecological Research Assistant):由 Georgia Tech 开发的交互式学习环境,用于生态模型模拟,与 VeRA 无关。
本文明确聚焦于机器学习中的 VeRA(Vector-based Random Matrix Adaptation),避免与上述无关项目混淆。
9. 总结
VeRA 是一种高效的微调方法,通过向量驱动的随机矩阵适配机制大幅减少参数量,适合超大规模模型的微调。它在参数效率、训练成本和性能上优于 LoRA,特别适用于多任务部署和资源受限环境。