YOLOv8独家改进:backbone主干改进| 轻量化之王MobileNetV4,秒杀Mobile系列

本文介绍了YOLOv8的backbone改进,使用MobileNetV4,其特点是引入通用倒瓶颈(UIB)搜索块,优化的NAS配方和新颖的蒸馏技术,提升目标检测速度和准确性。详细步骤包括在YOLOv8中新建和修改相应文件,实现MobileNetV4的集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀🚀🚀本文独家改进:MobileNetV4主要改进,1)引入了通用倒瓶颈(UIB)搜索块,这是一个统一且灵活的结构,它融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分(ExtraDW)变体;2)一种优化的神经结构搜索(NAS)配方,提高了MNv4的搜索效率;3)为了进一步提升准确度,引入了一种新颖的蒸馏技术。

🚀🚀🚀替代YOLOv8的backbone

🚀🚀🚀学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

1.原理介绍 

### YOLOv10 Lightweight Backbone MobileNetV4 Implementation and Optimization In the context of object detection, integrating a lightweight backbone such as MobileNetV4 into an advanced detector like YOLOv10 aims to balance efficiency with performance. While specific details about YOLOv10 are not directly provided here, insights can be drawn from related advancements in network architecture design. MobileNet architectures have been optimized over several iterations for efficient computation on mobile devices. The key feature lies in depthwise separable convolutions which significantly reduce computational cost while maintaining reasonable accuracy levels[^2]. For implementing MobileNetV4 specifically within YOLOv10: #### Depthwise Separable Convolutions Depthwise separable convolutions separate standard convolution operations into two stages: depthwise convolution followed by pointwise convolution. This approach reduces parameter count and floating-point operations (FLOPs), making it suitable for real-time applications on resource-constrained platforms[^3]. ```python import torch.nn as nn class DepthwiseSeparableConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DepthwiseSeparableConv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, groups=in_channels, padding=padding) self.pointwise = nn.Conv2d(in_channels, out_channels, 1) def forward(self, x): x = self.depthwise(x) x = self.pointwise(x) return x ``` #### Model Pruning Techniques To further optimize MobileNetV4 when used as a backbone in YOLOv10, model pruning techniques could be applied. These methods remove less important weights or neurons without significant loss of accuracy. Structured pruning approaches target entire filters rather than individual connections, leading to more compact models that run faster during inference[^4]. #### Quantization Aware Training Quantizing neural networks involves converting high precision parameters (e.g., float32) to lower bit representations (int8). During training, quantization aware schemes simulate this process allowing adjustments so that post-training quantized versions maintain comparable accuracies compared to their full-precision counterparts[^5]. ```python from torchvision import models model = models.mobilenet_v2(pretrained=True) quantized_model = torch.quantization.convert(model.eval()) ``` --related questions-- 1. How does the integration of MobileNetV4 affect the overall speed versus accuracy trade-off in YOLOv10? 2. What challenges arise when adapting newer MobileNet variants for use in existing detectors like YOLO series? 3. Can other types of optimizations besides those mentioned improve the performance of MobileNet-based backbones in object detection tasks? 4. Are there any publicly available implementations combining YOLOv10 with MobileNetV4 that serve as reference points for research purposes?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值