YOLOv8优化策略:轻量化改进 | LeYOLO,新的可扩展和高效CNN目标检测体系结构

   🚀🚀🚀本文改进:基于FLOP的高效目标检测计算的神经网络架构的设计,便于嵌入式和面向移动的人工智能对象检测应用。LeYOLO-Small在COCO val上实现了38.2%的竞争性mAP分数,仅使用4.5 FLOP(G),与最新的最先进的YOLOv9-Tiny模型相比,计算负载减少了42%,同时实现了相似的精度。

🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

1.LeYOLO原理介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值