【笔记】Windows 安装 Triton 的工作记录(之二)

之前的探索:

Windows 安装 Triton 的工作记录-CSDN博客


因为 triton 目前只支持在 Linux 或 WSL 上用 pip install triton 直接安装:

triton · PyPI

下面给出在 Windows 10/11安装 Triton 的完整流程。核心路径是:

  1. 先装好 VC++ 运行时与编译工具链;

  2. 创建 Python ≥3.10 的虚拟环境并装好 PyTorch(CUDA ≥12);

  3. 从 Hugging Face 镜像下载对应 Python 版本的预编译 .whl 后 pip 本地安装;

  4. Python 中 import triton 验证。

下述步骤全部亲测 2025-08-27 可用,如遇版本迭代,只需把文件名替换成下载页最新即可。


一、系统准备

项目要求
操作系统Windows 10/11 64-bit
GPU 驱动≥ 535.x(支持 CUDA 12.4)
Python3.10 – 3.12(推荐 3.10/3.11)
包管理器pip ≥ 23
编译工具Visual Studio Build Tools 2022(MSVC 14.3x)

二、安装 Visual Studio Build Tools(一次性操作)

  1. 下载安装器
    https://aka.ms/vs/17/release/vs_BuildTools.exe

  2. 启动后勾选
    • “Desktop development with C++” 工作负载
    • 右侧确保勾选 MSVC v143Windows 10/11 SDKCMake

  3. 安装完成后,重启电脑,让环境变量生效。


三、创建 Python 虚拟环境(示例用虚拟环境)

python -m venv .venv
.\.venv\Scripts\activate

或者 conda/miniconda 虚拟环境:

conda create -n triton python=3.11 -y
conda activate triton

四、安装 PyTorch(比如 CUDA 12.4 预编译版)

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

五、下载 Triton Windows 预编译包

madbuda/triton-windows-builds 在主

  1. 打开镜像目录
    madbuda/triton-windows-builds at main

  2. 找到与你的 Python 版本匹配的 .whl
    例:triton-3.2.0-cp311-cp311-win_amd64.whl(Python 3.11)

  3. 点击文件名 → 右键“下载”到本地,例如 D:\pkgs\

Triton 预编译包需严格匹配 Python 版本,否则安装失败,对应关系如下:

Triton 版本支持 Python 版本(对应 .whl 文件名标识)
2.1.03.10(cp310)、3.11(cp311
3.0.03.10(cp310)、3.11(cp311)、3.12(cp312

打开浏览器,访问 madbuda/triton-windows-builds 仓库,页面中列出了所有可用文件,核心 .whl 文件及说明如下表:

文件名称支持 Python 版本Triton 版本文件大小适用场景
triton-2.1.0-cp310-cp310-win_amd64.whl3.102.1.0314 MB需要兼容旧版本项目,依赖 Triton 2.x 特性
triton-2.1.0-cp311-cp311-win_amd64.whl3.112.1.0555 MBPython 3.11 用户,需 2.x 版本稳定性
triton-3.0.0-cp310-cp310-win_amd64.whl3.103.0.024 MB追求轻量安装,需 3.x 新特性(如优化编译速度)
triton-3.0.0-cp311-cp311-win_amd64.whl3.113.0.024 MBPython 3.11 用户,轻量 + 新特性需求
triton-3.0.0-cp312-cp312-win_amd64.whl3.123.0.024 MBPython 3.12 用户,最新版本兼容

2.2 选择并下载 .whl 文件

  1. 版本选择原则
    • 优先匹配当前 Python 版本(例如 Python 3.11 需选择文件名含 cp311 的文件)。
    • 若用于 ComfyUI 等工具,推荐选择 triton-2.1.0-cp311-cp311-win_amd64.whl(与 madbuda 提供的 python_3.11.9_comfy.zip 配套,兼容性最佳)。
    • 若为新项目开发,建议选择 Triton 3.0.0(文件更小,支持更多优化功能)。
  2. 下载操作
    • 在目标文件右侧点击 “xet” 按钮(部分浏览器显示为 “下载” 图标),即可开始下载。
    • 建议将文件保存至易于查找的目录(如 D:\Triton-Wheels),避免后续安装时路径过长。

六、本地安装 Triton

在刚才的虚拟环境终端里执行:

cd D:\pkgs
pip install triton-3.2.0-cp311-cp311-win_amd64.whl

若提示缺 cmakeninja,先 pip install cmake ninja 再重试。


七、验证安装

CMD

进入 python 环境验证:

import triton
# 查看 Triton 版本
print(f"Triton 版本: {triton.__version__}")

PowerShell

进入 python 环境验证:

python - << "EOF"
import triton, torch
print("Triton version:", triton.__version__)
print("Torch CUDA available:", torch.cuda.is_available())
EOF

正常输出类似:

Triton version: 3.2.0

八、常见问题速查

现象解决
cl.exe 不是内部或外部命令环境变量未生效,重启终端或手动把 C:\Program Files\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\*\bin\Hostx64\x64 加入 PATH
ImportError: DLL load failed安装最新 VC++ Redistributable:https://aka.ms/vs/17/release/vc_redist.x64.exe
GPU 检测不到升级 NVIDIA 驱动到 ≥535.x,并确认 nvidia-smi 能看到显卡
版本不匹配重新下载与 Python 版本 完全对应的 .whl

至此,Windows 原生 Triton 环境已就绪,可直接运行基于 Triton 的 Python 脚本。

另外我们也发现一个问题,Windows 安装 Triton 之后,Triton 对 CUDA 的支持似乎有问题,可能是因为实验的 CUDA 版本过高的因素 (CUDA 13.0),也可能是 Triton 在 Windows 平台对 CUDA 的支持本就不好导致,所以对于 CUDA 的支持正在积极地探索中,敬请关注后续博客更新。

其他参考文献:

Windows 安装 Triton 的工作记录-CSDN博客

pytorch-triton · PyPI

triton-windows · PyPI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值