目录
3. Interval Join:给 Join 加上“时间边界”
5.3 代码实战:订单与商品价格的 Temporal Join
7. Flink SQL vs DataStream API:Join 的两种玩法
9. 生产环境中的 Flink Join:稳如磐石的部署与优化
1. 揭开 Flink Join 的神秘面纱
Apache Flink 作为大数据实时处理的“尖子生”,它的 Join 操作在流处理中扮演着至关重要的角色。Join 不仅仅是把两张表“拼”在一起,它更像是数据流的“化学反应”,能将分散的信息融合成有意义的洞察。无论是实时推荐系统、订单与用户数据的关联,还是金融交易的监控,Join 都是不可或缺的利器。
选型建议
场景 | 推荐 Join 类型 | 优势 | 注意事项 |
---|---|---|---|
双流精确匹配 | Regular Join | 支持复杂关联条件 | 需设 |