ClickHouse 数据倾斜实战:案例分析与优化技巧

目录

ClickHouse 数据倾斜问题总结与优化措施

1. 分片键选得不好,埋下隐患

2. 数据本身就“偏心”

3. 查询习惯加剧失衡

4. 硬件差异“雪上加霜”

表现形式一览

优化措施:从根源到实践

优化分片键:让数据均匀“落户”

数据预处理:写入前先“理顺”

查询优化:别让计算扎堆

硬件均衡:别让“短板”拖后腿

ClickHouse 的“独门绝技”

MergeTree 引擎的妙用

分布式表“分而治之”

案例分析:从“歪”到“正”的蜕变

超大数据量场景下的分片策略

1. 基于哈希的分片策略

2. 多级分片策略

3. 动态分片与自动扩展

复杂查询的倾斜治理

1. JOIN 操作的倾斜优化

2. GROUP BY 的倾斜治理

3. 子查询与分布式优化的平衡


ClickHouse 数据倾斜问题总结与优化措施

在 ClickHouse 的分布式架构中,数据通过分片副本实现水平扩展和高可用。分片负责将数据切分到不同节点,副本则为数据提供冗余备份。然而,当数据在分片间分布不均时,倾斜就发生了。想象一下,你把一堆苹果分给几个朋友,结果某个朋友拿了一大半,而其他人只分到几个——这就是数据倾斜的直观写照。

那么,数据倾斜到底是怎么冒出来的呢?以下是几个常见的“幕后推手”:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值