数据湖中的机器学习模型服务化:从理论到实战

目录

1. 数据湖:机器学习模型的“燃料库”

2. 模型服务化:从实验室到生产环境

服务化的核心步骤

3. 数据湖中的特征工程:从原始数据到模型“美食”

特征工程的“三板斧”

4. 模型服务化的架构设计:数据湖的“高速公路”

架构的核心组件

5. 模型再训练:让你的模型“与时俱进”

为什么需要再训练?

再训练的“流水线”设计

6. 自动化再训练:数据湖的“智能工厂”

自动化流水线的核心组件

7. 上线流:从训练到生产的“最后一公里”

上线流的三个阶段

8. 上线流的进阶技巧:多模型管理与无缝切换

多模型管理的“艺术”

无缝切换与回滚

9. 数据湖中的性能优化:让模型跑得更快

优化数据访问

优化计算资源

10. 生产环境常见问题:防坑指南

问题1:数据延迟

问题2:模型失效

问题3:推理延迟

11. 模型监控与反馈循环:让模型“活”起来

监控的核心指标

反馈循环的设计

12. 数据湖中的安全与合规:守住“数字城堡”

数据安全

模型安全

合规要求


1. 数据湖:机器学习模型的“燃料库”

想象一下,你是个探险家,手里拿着一张藏宝图,准备挖掘一座金矿。这座金矿就是数据湖,一个存储海量、多格式、半结构化或非结构化数据的宝库。它不像传统数据库那样规规矩矩,而是像个巨大的“数字湖泊”,容纳了从日志文件、传感器数据到社交媒体文本的各种信息。为什么数据湖对机器学习(ML)模型服务化这么重要?因为它提供了模型训练、推理和再训练所需的“燃料”——数据!

关键点:数据湖的核心优势在于统一存储灵活性。它能处理PB级的数据,支持批处理和流式处理,还能与多种工具无缝集成,比如Apache Spark、Delta Lake 或

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值