目录
1. 数据湖:机器学习模型的“燃料库”
想象一下,你是个探险家,手里拿着一张藏宝图,准备挖掘一座金矿。这座金矿就是数据湖,一个存储海量、多格式、半结构化或非结构化数据的宝库。它不像传统数据库那样规规矩矩,而是像个巨大的“数字湖泊”,容纳了从日志文件、传感器数据到社交媒体文本的各种信息。为什么数据湖对机器学习(ML)模型服务化这么重要?因为它提供了模型训练、推理和再训练所需的“燃料”——数据!
关键点:数据湖的核心优势在于统一存储和灵活性。它能处理PB级的数据,支持批处理和流式处理,还能与多种工具无缝集成,比如Apache Spark、Delta Lake 或