目录
2025 年,大模型算法不再只是“更大”,而是“更精、更快、更省”。以下五大关键词,浓缩了过去 12 个月学术界与工业界最值得关注的技术跃迁。
一、推理范式:从「快答」到「深思」
• OpenAI-o3 在 ARC-AGI 拿到 87.5%,首次超越人类平均水平 85%,把「系统 2」慢思考带进生产级模型
• 字节跳动 DAPO 算法用解耦裁剪 + 动态采样,在 AIME 2024 获得 50 分,验证强化学习对推理链的增益
• DeepSeek-R1-Zero 完全跳过 SFT,仅靠规则强化学习(GRPO)就达到与 o1 相近的数学水平,训练成本却仅为传统方案的 1/20
二、架构革命:MoE 成为“默认选项”
• GPT-5 使用 512 专家、激活参数仅 7%,推理延迟压缩到 0.8 ms/token
• MoE-LLaVA 把稀疏专家思想搬进多模态:3 B 激活参数即可媲美 7 B Dense 模型,并在物体幻觉基准上击败 13 B 对手
• 谷歌 Brain++ 液态神经网络实现 10 T 动态参数,随任务实时增减“液体通道”,能耗下降 89%
三、多模态融合:从“拼接”到“语义同构”
• LLaVA-NeXT 将输入分辨率提升 4 倍,引入全局 + 局部双通路特征,OCR 与推理能力全面超越 Gemini Pro
• LLaMA-VID 用「上下文 token + 内容 token」双 token 策略,把 1 小时视频塞进一张 24 G 显存,实现长视频问答 SOTA
• CogVideoX、SoRA 等文生视频模型将制作成本降到传统流程的 5%
四、训练与推理成本:光子芯片 & FP8 量化
• IBM 光子计算原型机单芯片 1.5×10¹⁸ 次运算/秒,单位能耗仅为 H100 的 1/10
• FP8 量化让 OpenAI-o3-mini、Google Gemma-3 在边缘端以 0.0003 USD/千 token 运行
• DeepSeek 蒸馏系列 1.5 B–70 B 参数全覆盖,单张 4090 即可跑 70 B 推理
五、产业落地:医疗与具身智能的“iPhone 时刻”
• 微软 Azure 精准医疗:CAR-T 成本从 47 万美元降至 8.3 万,早癌筛查覆盖 1800 万用户
• Tesla Optimus Gen3 借助多模态大模型,抓取成功率 99.2%,Atlas 机器人已能听懂自然语言指令执行抢险任务
• 数字病理 AI 替代 70% 人工复核,三甲医院年均节省 320 万元
结语
当稀疏 MoE 成为“默认选项”、光子芯片进入实验室、推理模型超越人类平均水平,大模型算法正式跨过“能用”到“好用”的临界点。2025 不是结束,而是 AI 2.0 生态爆发的开端。