[AcWing]837. 连通块中点的数量

本文深入解析并查集算法,涵盖初始化、查找根节点、合并连通块、询问连通性和获取联通块数量等核心操作。通过具体代码实现,帮助读者理解并查集在解决集合合并问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法标签 并查集

题目简叙

在这里插入图片描述

思路

合并集合的变体

一、初始化

for(int i=0;i<n;i++)p[i]=i,cnt[i]=1;

p[i]=i表示这是一个树根,一个祖节点
cnt[i]=1表示是这个集合初始化只有它一个元素

二、找根节点

int find(int x){
    if(p[x]!=x)p[x]=find(p[x]);
    return p[x];
}

三、合并连通块

 if(op=="C"){
            cin>>a>>b;
            a=find(a),b=find(b);
            if(a!=b){
                p[a]=b;
                cnt[b]+=cnt[a];
            }
        }

如果两个元素不在同一个集合
那么a的祖节点指向b的祖节点,合并两个集合
b的联通块数量等于两者之和

四、询问是否连通

if(find(a)==find(b))cout<<"Yes"<<endl;
else cout<<"No"<<endl;

五、联通块数量

cin>>a;
cout<<cnt[find(a)]<<endl;

返回整个集合有多少个元素

代码

#include<iostream>

using namespace std;

const int N=1e5+10;
int cnt[N],p[N];

int find(int x){
    if(p[x]!=x)p[x]=find(p[x]);
    return p[x];
}

int main(){
    int n,m;
    cin>>n>>m;
    
    for(int i=0;i<n;i++)p[i]=i,cnt[i]=1;
    
    string op;
    int a,b;
    while(m--){
        cin>>op;
        if(op=="C"){
            cin>>a>>b;
            a=find(a),b=find(b);
            if(a!=b){
                p[a]=b;
                cnt[b]+=cnt[a];
            }
        }
        else if(op=="Q1"){
            cin>>a>>b;
            if(find(a)==find(b))cout<<"Yes"<<endl;
            else cout<<"No"<<endl;
        }
        else {
            cin>>a;
            cout<<cnt[find(a)]<<endl;
        }
    }
    return 0;
}

AC记录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俺叫西西弗斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值