欧拉函数 原理及应用

本文介绍了欧拉函数的定义,提供了两种计算欧拉函数的代码实现,包括直接定义法和筛法,并详细解释了计算过程。同时,文章阐述了欧拉定理和费马小定理,证明了两者之间的关系。内容涵盖数论基础和算法应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉函数定义

在这里插入图片描述


欧拉函数证明

在这里插入图片描述
1∼N 中与 N 互质的数的个数被称为欧拉函数,求欧拉函数的值,其实就是在计算1∼N 中与 N 互质的数的个数
首先把N分解质因数,然后再逐步把与N不互质的数去掉,即质因子的倍数,在去的过程中可能出现多去了的情况,这时要补上。
在这里插入图片描述


计算欧拉函数代码分析

直接用定义求欧拉函数

//题目背景:AcWing 873
#include<iostream>
using namespace std;
int main()
{
    int n,a;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&a);
        int res=a;
        for(int i=2;i<=a/i;i++)    //分解质因数
        {
            if(a%i==0)
            {
                res=res/i*(i-1);   //先作除法再作乘法,如果先作乘法可能出现中间结果过大而最终结果溢出
                while(a%i==0) a/=i;
            }
        }
        if(a>1) res=res/a*(a-1);//先作除法再作乘法,如果先作乘法可能出现中间结果过大而最终结果溢出
        printf("%d\n",res);
    }
    return 0;
}

筛法求欧拉函数

给定一个正整数nnn,求1∼n1∼n1n中每个数的欧拉函数之和。
可利用线性筛法求质数的原理

//题目背景:AcWing 874
#include<iostream>
using namespace std;
const int N=1000010;
int primes[N],cnt;  //存储质数
int eular[N];  //存放每个数的欧拉函数
bool st[N];  //标记是否为质数,true表示不是质数
typedef long long LL;
int main()
{
    int n;
    scanf("%d",&n);
    eular[1]=1;  //1的欧拉函数为1
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            primes[cnt++]=i;
            eular[i]=i-1;   //质数的欧拉函数为i-1,因为质数n与1~n-1的每个数都互质
        }
        for(int j=0;primes[j]<=n/i;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0)
            {
                eular[i*primes[j]]=primes[j]*eular[i]; 
                break;
            }
            eular[i*primes[j]]=(primes[j]-1)*eular[i];
        }
    }
    LL res=0;
    for(int i=1;i<=n;i++) res+=eular[i];
    printf("%ld",res);
    return 0;
}

证明:

  • i%primes[j]==0
    在这里插入图片描述
  • i%primes[j]!=0
    在这里插入图片描述

欧拉定理

如果a和m互质,则
在这里插入图片描述

证明

在这里插入图片描述
在这里插入图片描述
费马小定理:
在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值