卡特兰数 概念及应用

这篇博客探讨了卡特兰数在组合计数问题中的应用,通过01序列解释了如何计算合法路径的数量。路径被置于坐标系中,起点(0,0),终点(n,n),路径要求横坐标始终大于等于纵坐标。不合法的路径可以通过映射转化为合法路径的计算。博主提供了模板代码,用于计算此类问题的解决方案,并指出该问题与著名的卡特兰数公式的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

Cn2n−Cn−12n=Cn2nn+1C_{n}^{2n}-C_{n-1}^{2n}=\frac{C_{n}^{2n}}{n+1}Cn2nCn12n=n+1Cn2n

应用一

题目背景

在这里插入图片描述

解题思路

将 01 序列置于坐标系中,起点定于原点。若 0 表示向右走,1 表示向上走,那么任何前缀中 0 的个数不少于 1 的个数就转化为,路径上的任意一点,横坐标大于等于纵坐标。题目所求即为这样的合法路径数量。

下图中,表示从 (0,0) 走到 (n,n) 的路径,在绿线及以下表示合法,若触碰红线即不合法。
在这里插入图片描述
由图可知,任何一条不合法的路径(如黑色路径),都对应一条从 (0,0) 走到 (n−1,n+1) 的一条路径(如灰色路径)。而任何一条 (0,0) 走到 (n−1,n+1) 的路径,也对应了一条从 (0,0) 走到 (n,n) 的不合法路径。

答案如图,即卡特兰数。

模板代码

//题目背景:AcWing 889
#include<iostream>
using namespace std;
const int N=100010,mod=1e9+7;
typedef long long LL;
int a,b,n;
int qmi(int a,int b,int p)
{
    int res=1;
    while(b)
    {
        if(b&1) res=(LL)res*a%mod;
        a=(LL)a*a%mod;
        b=b>>1;
    }
    return res;
}
int main()
{
    scanf("%d",&n);
    a=2*n,b=n;
    int res=1;
    for(int i=a;i>a-b;i--) res=(LL)res*i%mod;
    for(int i=1;i<=b;i++) res=(LL)res*qmi(i,mod-2,mod)%mod;
    //把除法转换成乘法的取模逆元
    res=(LL)res*qmi(n+1,mod-2,mod)%mod;
    printf("%d",res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值