概念
Cn2n−Cn−12n=Cn2nn+1C_{n}^{2n}-C_{n-1}^{2n}=\frac{C_{n}^{2n}}{n+1}Cn2n−Cn−12n=n+1Cn2n
应用一
题目背景
解题思路
将 01 序列置于坐标系中,起点定于原点。若 0 表示向右走,1 表示向上走,那么任何前缀中 0 的个数不少于 1 的个数就转化为,路径上的任意一点,横坐标大于等于纵坐标。题目所求即为这样的合法路径数量。
下图中,表示从 (0,0) 走到 (n,n) 的路径,在绿线及以下表示合法,若触碰红线即不合法。
由图可知,任何一条不合法的路径(如黑色路径),都对应一条从 (0,0) 走到 (n−1,n+1) 的一条路径(如灰色路径)。而任何一条 (0,0) 走到 (n−1,n+1) 的路径,也对应了一条从 (0,0) 走到 (n,n) 的不合法路径。
答案如图,即卡特兰数。
模板代码
//题目背景:AcWing 889
#include<iostream>
using namespace std;
const int N=100010,mod=1e9+7;
typedef long long LL;
int a,b,n;
int qmi(int a,int b,int p)
{
int res=1;
while(b)
{
if(b&1) res=(LL)res*a%mod;
a=(LL)a*a%mod;
b=b>>1;
}
return res;
}
int main()
{
scanf("%d",&n);
a=2*n,b=n;
int res=1;
for(int i=a;i>a-b;i--) res=(LL)res*i%mod;
for(int i=1;i<=b;i++) res=(LL)res*qmi(i,mod-2,mod)%mod;
//把除法转换成乘法的取模逆元
res=(LL)res*qmi(n+1,mod-2,mod)%mod;
printf("%d",res);
return 0;
}