题目
思路
集合
所有将第iii堆石子到第jjj堆石子合并成一堆石子的合并方式
属性
minminmin
状态计算
状态转移方程:
- 当i≠ji≠ji=j时:
f[i,j]=min{f[i,k]+f[k+1,j]+s[j]−s[i−1]}f[i,j]=\min\{f[i,k]+f[k+1,j]+s[j]-s[i-1]\}f[i,j]=min{f[i,k]+f[k+1,j]+s[j]−s[i−1]} - 当i=ji=ji=j时:
f[i,j]=0f[i,j]=0f[i,j]=0 单堆石子谈不上合并,所以无须耗费体力
其中,i≤k≤j−1i≤k≤j-1i≤k≤j−1,sss为石子质量的前缀和数组
问题答案: f[1][n]f[1][n]f[1][n]
for (int i = 1; i <= n; i++) {
dp[i][i] = 初始值
}
for (int len = 2; len <= n; len++) //区间长度
for (int i = 1; i + len - 1 <= n; i++) { //枚举起点
int j = i + len - 1; //区间终点
for (int k = i; k < j; k++) { //枚举分割点,构造状态转移方程
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
}
}
从大到小枚举区间长度,是为了计算大的长度时保证每种状态都被提前计算过
代码
#include<iostream>
using namespace std;
const int N=310;
int s[N];
int f[N][N];
int n;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&s[i]);
//计算前缀和数组,直接覆盖初始值就行,后面也用不到了
for(int i=1;i<=n;i++) s[i]+=s[i-1];
for(int len=2;len<=n;len++) //区间长度 长度从2开始,因为长度为1,就是单个石子本身,谈不上合并 长度从1到n枚举
for(int i=1;i+len-1<=n;i++) //枚举起点
{ //终点要在范围内
int l=i,r=i+len-1; //终点
f[l][r]=1e8; //初始化为最大值,为了进入下面的循环一开始把值赋给后者,不然初值是0,很难搞
for(int k=l;k<r;k++) //枚举分界点
f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
}
printf("%d",f[1][n]);
return 0;
}