AcWing 900. 整数划分 题解 计数类DP

本文介绍如何使用动态规划解决数独问题,通过状态转移方程f[i,j] = f[i-1,j-1] + f[i-j,j]计算所有数独组合的总数,从f[0,0]=1开始,最终输出所有可能组合的总计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

在这里插入图片描述


思路

状态表示f[i,j]f[i,j]f[i,j]

集合

所有总和iii,并且恰好表示成jjj个数的和的方案数。

属性

数量

状态计算

在这里插入图片描述
可以把f[i,j]f[i,j]f[i,j]的所有方案分为两类:

  • 方案里的j个数最小值是1
    f[i,j]=f[i−1,j−1]f[i,j]=f[i-1,j-1]f[i,j]=f[i1,j1]
    那满足这个条件的方案数 等价于 把这个最小的1拿走的方案数
  • 方案里的j个数最小值大于1
    f[i,j]=f[i−j,j]f[i,j]=f[i-j,j]f[i,j]=f[ij,j]
    那满足这个条件的方案数 等价于 把所有j个数都减去1的方案数

所以状态转移方程为:f[i,j]=f[i−1,j−1]+f[i−j,j]f[i,j]=f[i-1,j-1]+f[i-j,j]f[i,j]=f[i1,j1]+f[ij,j]

dp初始状态

f[0,0]=1f[0,0]=1f[0,0]=1
0个数组成的和为1的方案只有1个

最终结果

ans=f[n,1]+f[n,2]+...f[n,n]ans=f[n,1]+f[n,2]+...f[n,n]ans=f[n,1]+f[n,2]+...f[n,n]
所有方案数等于分别用1个、2个、…、n个数组成数n的方案数的和


代码

#include<iostream>
using namespace std;
const int N=1010,mod=1e9+7;
int n;
int f[N][N];
int main()
{
    scanf("%d",&n);
    f[0][0]=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)   //j最大不超过i,因为拆分的最小值是1,不会再小了
            f[i][j]=(f[i-1][j-1]+f[i-j][j])%mod;
    int res=0;
    for(int i=1;i<=n;i++)
        res=(res+f[n][i])%mod;
    printf("%d",res);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值