中心扩展法求解 leetcode 647.回文子串 & leeccode 5.最长回文子串

leetcode 647.回文子串

题目描述

leetcode 647.回文子串
在这里插入图片描述


思路

这是一个比较巧妙的方法,实质的思路和动态规划的思路类似。

比如对一个字符串 ababa,选择最中间的 a 作为中心点,往两边扩散,第一次扩散发现 left 指向的是 bright 指向的也是 b,所以是回文串,继续扩散,同理 ababa 也是回文串。

这个是确定了一个中心点后的寻找的路径,然后我们只要寻找到所有的中心点,问题就解决了。

中心点一共有多少个呢?看起来像是和字符串长度相等,但你会发现,如果是这样,上面的例子永远也搜不到 abab,想象一下单个字符的哪个中心点扩展可以得到这个子串?似乎不可能。所以中心点不能只有单个字符构成,还要包括两个字符,比如上面这个子串 abab,就可以有中心点 ba 扩展一次得到,所以最终的中心点由 2 * len - 1 个,分别是 len 个单字符和 len - 1 个双字符。

如果上面看不太懂的话,还可以看看下面几个问题:

  • 为什么有 2 * len - 1 个中心点?
    aba 有5个中心点,分别是 a、b、c、ab、ba
    abba 有7个中心点,分别是 a、b、b、a、ab、bb、ba
  • 什么是中心点?
    中心点即 left 指针和 right 指针初始化指向的地方,可能是一个也可能是两个
  • 为什么不可能是三个或者更多?
    因为 3 个可以由 1 个扩展一次得到,4 个可以由两个扩展一次得到
  • 如何有序地枚举所有可能的回文中心?
    我们需要考虑回文长度是奇数和回文长度是偶数的两种情况。
    如果回文长度是奇数,那么回文中心是一个字符;如果回文长度是偶数,那么中心是两个字符。
    当然你可以做两次循环来分别枚举奇数长度和偶数长度的回文,但是我们也可以用一个循环搞定。我们不妨写一组出来观察观察,假设 n = 4 n=4 n=4,我们可以把可能的回文中心列出来:
    在这里插入图片描述
    由此我们可以看出长度为 n n n的字符串会生成 2 n − 1 2n−1 2n1 组回文中心 [ l i , r i ] [l_{i},r_{i}] [li,ri],其中 l i = ⌊ l_{i}=\lfloor li= i 2 \frac{i}{2} 2i ⌋ \rfloor r i = l i + ( i % 2 ) r_{i}=l_{i}+(i \%2) ri=li+(i%2)。这样我们只要从 0 0 0 2 n − 2 2n−2 2n2 遍历 i i i,就可以得到所有可能的回文中心,这样就把奇数长度和偶数长度两种情况统一起来了。

代码

class Solution {
public:
    int countSubstrings(string s) {
        int res=0;
        for(int i=0;i<2*s.length()-1;i++)
        {
            int left=i/2,right=left+i%2;
            while(left>=0&&right<s.length()&&s[left]==s[right])
            {
                res++;
                left--;
                right++;
            }
        }
        return res;
    }
};

leeccode 5.最长回文子串

题目描述

leeccode 5.最长回文子串
在这里插入图片描述


思路

在前面求一个字符串的所有回文子串的基础上,改良一下
先求出最大的回文子串长度,再在求回文子串的过程中,求出最长长度的回文子串。


代码

class Solution {
public:
    string longestPalindrome(string s) {
        int ml=0;
        int left,right,sum;
        for(int i=0;i<2*s.length()-1;i++)
        {
            left=i/2,right=left+i%2;
            if(i%2)
                sum=0;
            else
            {
                sum=1;
                left--;
                right++;
            }
            while(left>=0&&right<s.length()&&s[left]==s[right])
            {
                sum+=2;
                left--;
                right++;
            }
            ml=max(ml,sum); //求出了最大长度
        }

        int r,l;  //保留有效的回文子串边界
        for(int i=0;i<2*s.length()-1;i++)
        {
            left=i/2,right=left+i%2;
            if(left==right)
            {
                sum=1;
                left--;
                right++;
            } 
            else
                sum=0;
            while(left>=0&&right<s.length()&&s[left]==s[right])
            {
                sum+=2;
                l=left,r=right;
                left--;
                right++;
            }
            if(sum==ml)
            {
                string res;
                for(int j=l;j<=r;j++)
                    res+=s[j];
                return res;
            }
        }
        string n;
        return n;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值