note
- prompt tuning可看做是prefix tuning的简化版本,在输入层加入prompt tokens,并不需要加入MLP进行调整来解决难训练的问题,作者实验表明随着预训练模型参数量的增加,prompt tuning效果逼近fine tuning效果
文章目录
一、Propmt tuning
1. peft库中的tuning
- 之前提到过可以借助
peft
库(Parameter-Efficient Fine-Tuning)进行微调,支持如下tuning:- Adapter Tuning(固定原预训练模型的参数 只对新增的adapter进行微调)
- Prefix Tuning(在输入token前构造一段任务相关的virtual tokens作为prefix,训练时只更新Prefix部分的参数,而Transformer的其他不分参数固定,和构造prompt类似,只是prompt是人为构造的即无法在模型训练时更新参数,而Prefix可以学习<隐式>的prompt)
- Prompt Tuning(Prefix Tuning的简化版,只在输入层加入prompt tokens,并不需要加入MLP)
- P-tuning(将prompt转为可学习的embedding层,v2则加入了prompts tokens作为输入)
- LoR