【LLM】Prompt tuning大模型微调实战

note

  • prompt tuning可看做是prefix tuning的简化版本,在输入层加入prompt tokens,并不需要加入MLP进行调整来解决难训练的问题,作者实验表明随着预训练模型参数量的增加,prompt tuning效果逼近fine tuning效果

一、Propmt tuning

1. peft库中的tuning

  • 之前提到过可以借助peft库(Parameter-Efficient Fine-Tuning)进行微调,支持如下tuning:
    • Adapter Tuning(固定原预训练模型的参数 只对新增的adapter进行微调)
    • Prefix Tuning(在输入token前构造一段任务相关的virtual tokens作为prefix,训练时只更新Prefix部分的参数,而Transformer的其他不分参数固定,和构造prompt类似,只是prompt是人为构造的即无法在模型训练时更新参数,而Prefix可以学习<隐式>的prompt)
    • Prompt Tuning(Prefix Tuning的简化版,只在输入层加入prompt tokens,并不需要加入MLP)
    • P-tuning(将prompt转为可学习的embedding层,v2则加入了prompts tokens作为输入)
    • LoR
### 关于大规模语言模型提示词设计的最佳实践 #### 设计原则 在构建有效的提示词时,需遵循一些基本原则来确保模型能够按照预期工作。这些原则包括但不限于提供清晰具体的指令、保持上下文连贯以及合理控制长度[^2]。 #### 模板结构 一个好的 `prompt` 应该具有明确的任务描述部分,这有助于引导模型理解所需执行的操作;同时还可以加入示例数据作为辅助说明,帮助提高输出质量。以下是基于此理念的一个通用模板: ```plaintext Instruction: [具体任务定义] Context (if any): [背景信息或先前对话记录] Example Input: [可选的例子输入] Expected Output Format: [期望的结果格式] ``` #### 实际应用案例 下面给出几个实际应用场景下的 `prompt` 示例,展示了如何根据不同目的调整上述基本框架内的各个组件: ##### 场景一:文本摘要生成 当希望从一段较长的文章中提取核心要点时,可以这样设置 `prompt`: ```plaintext Instruction: Generate a concise summary of the following text. Input Text: The history of artificial intelligence dates back to ancient times... Expected Length: About 50 words. ``` ##### 场景二:编程问题解答 对于寻求特定技术难题解决方案的情况,则应更加注重细节和技术术语的确切表达: ```plaintext Instruction: Provide an efficient Python function that reverses strings without using built-in methods. Code Snippet Context: Assume standard libraries are available but not direct string manipulation functions like reverse(). Test Case Example: For input "hello", output should be "olleh". ``` ##### 场景三:创意写作激发 如果目的是鼓励创造性思维并获得独特的故事构思,那么可以在 `prompt` 中引入更多开放性和想象力元素: ```plaintext Instruction: Create a short story set in a world where everyone can communicate with animals, focusing on friendship between humans and creatures. Tone/Mood Suggestion: Heartwarming yet adventurous. Character Ideas: A young girl named Lily who discovers her ability while lost in forest; talking fox as guide. ``` 通过以上实例可以看出,在不同的业务场景下灵活运用这些要素组合,可以帮助我们创建出既符合逻辑又充满个性化的高质量提示词,从而充分发挥大型预训练模型的能力。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值