关于RuntimeError: Cannot re-initialize CUDA in forked subprocess和CUDA error: initialization error的解决

在尝试在GPU上运行深度学习任务时,遇到了CUDA error: initialization error和RuntimeError: Cannot re-initialize CUDA in forked subprocess的问题。解决方法是在DataLoader之外将数据转移到CUDA上,避免在Dataloader内部操作CUDA。通过修改代码,将数据加载和CUDA操作分离,成功解决了这两个错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近小虎在cpu上试跑了detection任务的程序没什么问题,但是在gpu上运行时发生了关于cuda的一些报错,发现解决问题的精华就一句话:"不可在DataLoader或DataSet内将任何数据放到CUDA上,而是等到程序运行出DataLoader之后(也就是到了train里的时候)将数据放到CUDA上。"下面给出问题解决的例子和代码。

问题CUDA error: initialization error

先看看小虎程序的报错,报错中说明了在对bounding box的左上角加长宽坐标形式转成左上右下对角点坐标形式时,CUDA初始化回发生错误。

  File "/home/wei/lef/lef2/lib/model/detection/matcher/utils.py", line 173, in centreForm2CornerForm
    boxes[..., :2] -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值