- 根据任务类型:
监督学习任务:从已标记的训练数据来训练模型。 主要分为:分类任务、回归任务、序列标注任务。
无监督学习任务:从未标记的训练数据来训练模型。主要分为:聚类任务、降维任务。
半监督学习任务:用大量的未标记训练数据和少量的已标记数据来训练模型。
强化学习任务:从系统与环境的大量交互知识中训练模型。 - 根据算法类型:
传统统计学习:基于数学模型的机器学习方法。包括 SVM 、逻辑回归、决策树等。这一类算法基于严格的数学推理,具有可解释性强、运行速度快、可应用于小规模数据集的特点。
深度学习:基于神经网络的机器学习方法。包括前馈神经网络、卷积神经网络、递归神经网络等。这一类算法基于神经网络,可解释性较差,强烈依赖于数据集规模。但是这类算法在语音、视觉、自然语言等领域非常成功。
机器学习的分类
最新推荐文章于 2025-07-08 20:25:17 发布