机器学习的分类

  1. 根据任务类型:
    监督学习任务:从已标记的训练数据来训练模型。 主要分为:分类任务、回归任务、序列标注任务。
    无监督学习任务:从未标记的训练数据来训练模型。主要分为:聚类任务、降维任务。
    半监督学习任务:用大量的未标记训练数据和少量的已标记数据来训练模型。
    强化学习任务:从系统与环境的大量交互知识中训练模型。
  2. 根据算法类型:
    传统统计学习:基于数学模型的机器学习方法。包括 SVM 、逻辑回归、决策树等。这一类算法基于严格的数学推理,具有可解释性强、运行速度快、可应用于小规模数据集的特点。
    深度学习:基于神经网络的机器学习方法。包括前馈神经网络、卷积神经网络、递归神经网络等。这一类算法基于神经网络,可解释性较差,强烈依赖于数据集规模。但是这类算法在语音、视觉、自然语言等领域非常成功。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

应用市场

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值