【水下目标跟踪】Improving Underwater Visual Tracking With a Large Scale Dataset and Image Enhancement

这篇文章主要讨论了一个新提出的用于水下视觉目标跟踪 (Underwater Visual Object Tracking, UVOT) 的数据集和图像增强方法。以下是重点内容的总结:

  1. 研究背景

    • 由于在水下环境中,光照条件不均匀、能见度低、对比度低、目标伪装和水中颗粒反射等独特挑战,传统的视觉跟踪方法在水下表现较差。
    • 提出了一个新型水下图像增强算法,旨在提升水下目标跟踪的质量。
  2. 数据集介绍

    • 提出了一个名为UVOT400的大规模基准数据集,包括400段视频和275,000个手动标注的帧。
    • 数据集包含了多种水下特定的跟踪属性,例如水色变化、目标干扰物、目标伪装、相对目标大小和能见度低等。
  3. 图像增强算法 (UWIE-TR)

    • 提出了一个基于Transformer的图像增强方法,专门用于提升水下跟踪性能。
    • 该算法利用多个已有图像增强方法的结果,由专家人工选择最优结果生成伪真值(pseudo-ground truth),并用这些数据来训练模型。
  4. 实验评估

    • 文章通过三种不同的评估协议(Protocol I、Protocol II、Protocol III)对数据集和图像增强方法进行了详细评估:
      • Protocol I:没有进行重新训练,直接评估现有跟踪器在UVOT400数据集上的性能。
      • Protocol II:对现有跟踪器进行微调训练,并在UVOT400数据集上进行评估。
      • Protocol III:在增强后的UVOT400数据集上进行训练和评估。
  5. 结果与发现

    • 在Protocol I中,所有跟踪器在水下环境中的性能明显下降,说明了水下环境挑战的严重性。
    • 在Protocol II中,经过微调训练后,跟踪器的性能有所提升,但与开放环境的性能相比仍然存在较大差距。
    • 在Protocol III中,经过图像增强后的数据集进一步显著提升了跟踪器的性能,证明了图像增强算法的有效性。
  6. 主要贡献

    • 提供了一个大规模高质量的UVOT400基准数据集,涵盖了多种水下特定属性。
    • 提出了一个新颖的UWIE-TR图像增强算法,提高了现有SOTA跟踪器在水下场景中的性能。
    • 提供了全面的基准测试,包括25种最新的视觉跟踪算法,展示了这些算法在水下环境中的性能显著下降。
  7. 未来工作

    • 仍需开发更为鲁棒的水下专用跟踪器,能够在端到端方式中进行图像增强和跟踪任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

应用市场

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值