Windows搭建CUDA开发环境

1. 确认 CUDA Toolkit 和 cuDNN 版本兼容性

  • ONNX Runtime 1.21.1 官方要求
    • CUDA 11.8 + cuDNN 8.5.0
    • 或 CUDA 12.x + cuDNN 8.9.0+
  • 系统环境:
    • nvidia-smi 显示驱动支持 CUDA 12.8(仅表示驱动兼容性,非实际安装的 CUDA Toolkit)。
    • 需要手动安装 CUDA Toolkit 12.xcuDNN 8.9+
  • CUDA 与 cuDNN 的版本匹配规则,cuDNN 是专为 CUDA 优化的深度学习加速库,其版本需与 CUDA 版本严格对应。例如:CUDA 12.x 通常需要 cuDNN 8.9.x 及以上版
    • cuda_12.4.0_551.61_windows
    • cudnn-windows-x86_64-8.9.7.29_cuda12-archive

2. 安装 CUDA Toolkit 12.x

  • 访问 CUDA Toolkit 12.4 下载页
  • 选择 Windows 版本,下载并安装。
  • 验证安装:nvcc --version # 应输出 CUDA 12.x
  • 如果 nvcc 命令不存在,说明 CUDA Toolkit 未正确安装

3. 安装 cuDNN 8.9+

  • 访问 cuDNN 下载页(需注册 NVIDIA 账号)。
  • 下载 cuDNN 8.9.x for CUDA 12.x
  • 解压 cuDNN 压缩包,将以下文件复制到 CUDA 安装目录:
    • bin\*C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin
    • include\*C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include
    • lib\*C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\lib\x64

4. 安装 MSVC 2022 运行时库

5. 配置环境变量

  • 添加 CUDA 路径到系统 PATH
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin
  • 验证路径是否生效
echo %PATH% | findstr "CUDA"

6. 安装 ONNX Runtime-GPU

# 卸载旧版本
pip uninstall onnxruntime-gpu
# 安装指定版本(支持 CUDA 12)
pip install onnxruntime-gpu==1.17.0  # 确认版本兼容性
# 卸载当前 numpy 并安装兼容版本
pip uninstall numpy -y
pip install numpy==1.24.2  # ONNX Runtime 1.21.1 推荐版本

7. 验证 GPU 是否可用

import onnxruntime as ort
# 检查可用提供程序
print(ort.get_available_providers())  # 应包含 'CUDAExecutionProvider'
# 创建 GPU 会话
session = ort.InferenceSession("model.onnx", providers=['CUDAExecutionProvider'])
print("GPU 已启用!")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探模之翼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值