课程1:人工智能概述

第一课:人工智能概述

目录

  1. 人工智能的定义及历史
    • 1.1 人工智能的定义
    • 1.2 人工智能的发展历史
  2. 机器学习、深度学习与传统编程的区别
    • 2.1 传统编程
    • 2.2 机器学习
    • 2.3 深度学习
  3. AI在实际生活中的应用
  4. 文章结束语
  5. 欢迎讨论
  6. 推荐阅读
  7. 参考文献

1. 人工智能的定义及历史

1.1 人工智能的定义

人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,旨在创造能够执行通常需要人类智能才能完成的任务的机器。这些任务包括语言理解、视觉识别、决策和学习。AI的目标不仅是再现人类智能,还要超越人类在某些特定任务中的表现。在这里插入图片描述
人工智能(Artificial Intelligence,简称AI)是一个涉及计算机科学、数学、语言学等多个领域的交叉学科。它的目标是创建能够模拟人类智能行为的机器。具体来说,人工智能通常被定义为:

“人工智能是指通过机器实现的智能行为,包括感知环境理解信息做出决策采取行动的能力。”

这个定义涵盖了AI的几个关键方面:感知、理解、决策和行动。不过,不同的专家和机构可能会有不同的表述方式。例如,有些定义强调机器学习和自我改进的能力,而另一些则更关注问题解决和逻辑推理。

1.2 人工智能的发展历史

1.2.1 初期阶段 (1950年-1970年)

人工智能的概念起源于20世纪50年代。1956年,达特茅斯会议被广泛认为是人工智能研究的开端,众多计算机科学家聚集在这里探讨机器能够思考的可能性。早期研究主要集中在语言处理和问题解决上。

一切似乎都始于1950年,艾伦·图灵提出了那个划时代的问题:“机器能思考吗?”他的图灵测试,仿佛一道闪电,照亮了整个领域。图灵不仅是一位先驱,更是一位先知,他的思想至今仍影响着我们对智能机器的理解。在这里插入图片描述
1956年的达特茅斯会议,犹如一场盛大的开幕式,正式拉开了人工智能研究的序幕。约翰·麦卡锡提出了“人工智能”这一术语,聚集了一群才华横溢的科学家,共同探讨如何赋予机器以智能。那时的他们,满怀热情,信心满满,仿佛未来的智能机器已经触手可及。

接下来的几年里,一些令人振奋的成果相继问世。1958年,逻辑理论家(Logic Theorist)的诞生,展示了机器在证明数学定理方面的潜力。这不仅是一次技术上的突破,更是对人类思维极限的一次挑战。

1.2.2 春天与冬天 (1980年代)

1966年,SHRDLU的出现,让我们看到了自然语言处理的曙光。它能理解简单的指令,并与用户进行互动,仿佛是一个能听懂我们语言的机器人朋友。

不久,技术的局限和计算能力的不足开始逐渐显现。研究者们发现,尽管他们已经取得了显著的进展,但要实现最初设定的宏伟目标,仍需克服重重困难。1973年,詹姆斯·莱特希尔的报告犹如一盆冷水,浇灭了人们的热情。报告指出,尽管投入了大量资金,但实际成果与预期相比,仍相去甚远。这导致了第一次AI寒冬,资金和兴趣的大幅削减,许多项目不得不搁浅。

进入80年代,专家系统的兴起使AI在某些领域(如医疗、金融)取得了成功。然而,随着商业投资和公众期望的下降,AI进入了一个被称为“人工智能寒冬”的阶段,许多研究项目被迫停止。

1.2.3 现代AI的发展 (2000年代以来)

随着计算能力的提升和大数据技术的融合,现代人工智能重新焕发生机。深度学习技术的出现推动了AI在多个领域的突破,使机器能够处理复杂的感知任务,并在自然语言处理、图像识别等方面取得显著成就。

进入21世纪,AI的发展迎来了新的春天。随着计算能力的显著提升和大数据的爆发式增长,AI技术开始迅速成熟。在这里插入图片描述
特别是深度学习的兴起,为AI注入了强大的动力。2006年, Geoffrey Hinton 等人在《Science》杂志上发表的论文,为深度神经网络的训练提供了新的方法,这标志着深度学习时代的正式开启。

这一时期,AI在多个领域取得了历史性的成就。2011年,IBM的沃森(Watson)超级计算机在电视智力竞赛节目《危险边缘》(Jeopardy!)中战胜了人类冠军,展示了AI在自然语言处理和知识图谱构建方面的巨大潜力。2012年,AlexNet在ImageNet大规模视觉识别挑战赛(ILSVRC)中夺得冠军,将图像识别的准确率大幅提升,开启了计算机视觉的新纪元。

2014年,深度学习在语音识别领域也取得了突破,DeepSpeech项目展示了机器在理解人类语言方面的新高度。2016年,谷歌的AlphaGo战胜了世界围棋冠军李世石,这一胜利不仅震惊了世界,也标志着AI在复杂策略游戏中的全面超越。


2. 机器学习、深度学习与传统编程的区别

2.1 传统编程

**核心:**传统编程方法依靠人为的规则和逻辑,开发者需要精确定义输入、过程与输出。程序依据这些规则执行任务,但在面对新情况时缺乏适应性。

什么是编程?嗯,简单来说,编程就是用计算机能理解的语言来告诉计算机该做什么事情。就像我们人类用语言交流一样,但计算机比较笨,只能理解特定的指令。编程就是编写这些指令,让计算机按照我们的想法去工作。

编程的历史,这个话题有点长,但我会尽量简洁地讲一下。最早的编程可以追溯到19世纪,那时候还没有电子计算机,有个叫阿达·洛夫莱斯的女士被认为是第一个程序员,她为查尔斯·巴贝奇的分析机编写了指令。不过,真正的现代编程是从20世纪40年代开始的,随着电子计算机的诞生,人们开始用二进制代码直接编程,那可真是费脑子,程序员得直接操作0和1,跟计算机硬刚。在这里插入图片描述
再到了后来,为了方便,人们发明了汇编语言,用一些助记符代替二进制代码,虽然还是挺麻烦,但比直接写0和1强多了。再后来了,高级编程语言出现了,比如BASIC、Pascal、C语言等等,这些语言更接近人类语言,程序员可以更方便地表达自己的想法,计算机再通过编译器或解释器把这些语言转换成机器能理解的代码。

传统编程是什么样子的?传统编程通常是指在高级语言出现之前或早期,程序员需要非常仔细地管理计算机的每一个操作,比如内存分配、指针操作等,一不小心就容易出错。而且,那时候的程序调试非常困难,不像现在有那么多工具和环境支持。传统编程更注重效率和性能,程序员得对计算机的硬件有深入的了解。

举个例子,爷爷级那辈的程序员,他们可能得用汇编语言写操作系统,每一行代码都得精打细算,生怕浪费一点内存或处理器时间。而现在的程序员,可以用各种高级语言和框架,开发复杂的应用程序,效率高多了,但同时也需要处理更多的抽象和复杂性。

编程就像是和计算机对话,从最初的直接对话到现在的用各种语言和工具间接对话,虽然方式变了,但核心还是让计算机按照我们的想法去工作。传统编程更注重基础和细节,而现代编程则更强调效率和创新。

2.2 机器学习

核心:机器学习是一种利用算法分析数据,使计算机能够自主学习并做出预测的技术。机器学习不需全面的规则定义,而是通过从数据中识别模式进行训练。

机器学习其实就是让计算机自己从数据中学习规律,然后做出预测或者决策,而不需要我们手动编程告诉它该怎么做。就像我们人类通过学习经验来做出判断一样,机器学习让计算机也能“学习”到这些经验。

机器学习的历史,这个话题挺有意思的。机器学习其实不算特别新,但真正火起来也就是最近这几十年的事。最早可以追溯到20世纪50年代,那时候人工智能刚开始兴起,人们就想着让机器自己学习。不过,那时候的计算机能力有限,数据也不多,所以进展比较慢。在这里插入图片描述
到了80年代和90年代,专家系统比较火,但还是依赖于人工提取的规则。真正让机器学习开始突破的是21世纪初,随着互联网的发展,数据量爆炸式增长,再加上计算能力的提升,特别是GPU的使用,让深度学习成为可能。

我们熟知的,比如说,2012年,AlexNet在ImageNet竞赛中大放异彩,准确率大幅提升,让深度学习在图像识别领域一炮而红。再比如,2016年,AlphaGo战胜了世界围棋冠军李世石,展示了机器学习在复杂策略游戏中的强大能力。

那么机器学习能有啥用?比如,你用的智能手机的语音助手,就是机器学习的成果;你在网上购物时,推荐系统会根据你的浏览历史推荐商品,这也是机器学习在起作用。还有就是那些所谓的智能推荐,就好比现在你再看我的文章。

不过,机器学习也不是万能的,它需要大量的数据和计算资源,而且有时候模型的决策过程比较“黑箱”,不太容易解释。所以,现在也有很多研究在尝试解决这些问题,让机器学习更加透明和可靠。

我们怎么理解机器学习?她其实就像是给计算机装上了“大脑”,让它能够从数据中学习和成长。

机器学习的类型

好的,现在我需要根据提供的教材框架,为每种机器学习类型填写具体的内容,包括概念、定义、解析、代码案例和源代码。这确实是一个庞大的任务,但我会一步步来。

首先,我需要明确每种类型的具体内容。让我们回顾一下:

机器学习的类型
  1. 监督学习

    • 利用带标签的数据集进行训练,以便模型能够预测未见数据的输出。
  2. 无监督学习

    • 使用没有标签的数据,寻找数据内部的结构或模式。
  3. 强化学习

    • 系统通过与环境的交互来学习,依据奖励和惩罚调整行为。

1.监督学习

概念: 监督学习是机器学习的一种方法,其中模型从带标签的训练数据中学习,以便对新的、未见的数据做出预测。

定义: 在监督学习中,算法通过分析带标签的训练数据中的输入和输出对,推导出一个模型,该模型能够对新的、未见的输入做出准确的预测。

理解
监督学习的核心在于利用已知的输入和输出对来训练模型。训练集中的每个训练样本都包含一组特征和一个对应的标签。模型的目标是学习从特征到标签的映射函数。训练完成后,模型可以应用于新的数据点,以预测其标签。

常见的监督学习任务包括分类和回归。分类任务涉及将数据点分配到两个或多个类别中,例如垃圾邮件检测或图像识别。回归任务则预测一个连续值,例如房价预测或股票价格预测。

关键算法包括线性回归、逻辑回归、决策树、支持向量机和神经网络。模型的性能通常通过指标如准确率、精确率、召回率和F1分数来评估。

案例
让我们考虑一个简单的分类问题:根据肿瘤的特征预测肿瘤是恶性还是良性。

源代码

import numpy as np
import pandas as pd
from sklearn.model_s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值