Experience
-
Stealth Robotics Startup
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Education
Publications
-
Naturalistic driver intention and path prediction using recurrent neural networks
IEEE Transactions on Intelligent Transportation Systems
Understanding the intentions of drivers at intersections is a critical component for autonomous vehicles. Urban intersections that do not have traffic signals are a common epicenter of highly variable vehicle movement and interactions. We present a method for predicting driver intent at urban intersections through multi-modal trajectory prediction with uncertainty. Our method is based on recurrent neural networks combined with a mixture density network output layer. To consolidate the…
Understanding the intentions of drivers at intersections is a critical component for autonomous vehicles. Urban intersections that do not have traffic signals are a common epicenter of highly variable vehicle movement and interactions. We present a method for predicting driver intent at urban intersections through multi-modal trajectory prediction with uncertainty. Our method is based on recurrent neural networks combined with a mixture density network output layer. To consolidate the multi-modal nature of the output probability distribution, we introduce a clustering algorithm that extracts the set of possible paths that exist in the prediction output and ranks them according to probability. To verify the method's performance and generalizability, we present a real-world dataset that consists of over 23,000 vehicles traversing five different intersections, collected using a vehicle-mounted lidar-based tracking system. An array of metrics is used to demonstrate the performance of the model against several baselines.
-
A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections
IEEE Robotics and Automation Letters
In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection…
In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection in urban areas. We also present a very large naturalistic dataset recorded in a typical intersection during two days of operation. This comprehensive dataset is used to demonstrate the performance of the algorithm introduced in this letter. The system produces excellent results, giving a significant 1.3-s prediction window before any potential conflict occurs.
Other authors -
-
Long short term memory for driver intent prediction
2017 IEEE Intelligent Vehicles Symposium (IV)
Advanced Driver Assistance Systems have been shown to greatly improve road safety. However, existing systems are typically reactive with an inability to understand complex traffic scenarios. We present a method to predict driver intention as the vehicle enters an intersection using a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). The model is learnt using the position, heading and velocity fused from GPS, IMU and odometry data collected by the ego-vehicle. In this paper we…
Advanced Driver Assistance Systems have been shown to greatly improve road safety. However, existing systems are typically reactive with an inability to understand complex traffic scenarios. We present a method to predict driver intention as the vehicle enters an intersection using a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). The model is learnt using the position, heading and velocity fused from GPS, IMU and odometry data collected by the ego-vehicle. In this paper we focus on determining the earliest possible moment in which we can classify the driver's intention at an intersection. We consider the outcome of this work an essential component for all levels of road vehicle automation.
Other similar profiles
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Explore More