卡特兰数是一个特殊的数列,基于这个数列,可以找出很多有趣的问题,对于我们学计算机的而言,与这个数列打交道是不可避免了,举一个很经典的例子。我之前在栈的压入、弹出序列这篇文章中讲到过这个给定入栈序列,判断是否是合法的出栈序列。
与该问题类似的问题有很多,如果我们把问题进一步深入,我们去研究给定n个字符的入栈合法的出栈序列的种数是多少,这个时候,卡特兰数就会随之浮现出来。事实上我们耐心去思考,就能得到卡特兰数的递推公式,但是我们这里直接给结论。
使用场景
给定n个元素入栈,我们一共可以得到的合法出栈序列的个数就是卡特兰数第n项。,除此之外,这个神奇的数列还是以下诸多问题的解。
- 10个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问有多少种排列方式?
- 圆周上有标号为1,2,3,4,……,2n的共计2n个点,这2n个点配对可连成n条弦,且这些弦两两不相交的方式数
- 将一个凸N+2多边形区域分成三角形区域的方法数
- 圆桌周围有 2n个人,他们两两握手,但没有交叉的方案数
- 游乐园门票1元一张,每人限购一张。现在有10个小朋友排队购票,其中5个小朋友每人只有1元的钞票一张,另5个小朋友每人只有2元的钞票一张,售票员没有准备零钱。问:有多少种排队方法,使售票员总能找的开零钱
- 甲乙两人比赛乒乓球,最后结果为20∶20,问比赛过程中甲始终领先乙的计分情形的种数。
- 饭后,姐姐洗碗,妹妹把姐姐洗过的碗一个一个放进碗橱摞成一摞。一共有n个不同的碗,洗前也是摞成一摞的,也许因为小妹贪玩而使碗拿进碗橱不及时, 姐姐则把洗过的碗摞在旁边,问:小妹摞起的碗有多少种可能的方式?
- 一个汽车队在狭窄的路面上行驶