开始接触机器学习

本文介绍了如何通过计算模型预测值与真实值之间的平方距离来评估机器学习模型的有效性,并提供了具体的Python函数实现。此外,还分享了在Mac环境下安装Python及scikit-learn库的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前没有什么基础,从头开始,一些点滴都会记录在这里。

模型预测值到真实值的平方距离可以作为筛选正确的模型依据。

def error(f,x,y) {

          return sum((f(x) - y) **2)

}

f(x)为模型预测值,y为实际值。如果模型预测值等于实际值(极端好的效果)那么差为0.平方是为了取正(误差有正有负),相当于绝对值的意思。

在多个模型中,这个误值越小说明模型越接近实际数据,但这只是作为筛选模型的一种依据,还要根据其它条件。


安装关键点:

保持只有一份安装文件,否则会乱引用引起编译错误。

mac自带和python在/System/Library/Frameworks/Python.framework下面,而下载的包一般会安装到

/Library/Frameworks/Python.framework/下,所以应该先sudo ln -s /System/Library/Frameworks/Python.framework /Library/Frameworks/Python.framework

保证只有一份安装。如果删除/System/Library/Frameworks/Python.framework然后把自己的/Library/Frameworks/Python.framework link过去的话,除了要2.7,

还需要以前的老版本,系统会老版本有依赖。

下载dmg文件后安装,配置export PYTHONPATH=/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python

mac版的下载scikit-learn-0.14.1.tar.gz

解压scikit-learn-0.14.1后,进入目录直接 sudo python setup.py install。

在eclipse中要在forced builtins中手工加入sklearn


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值