交叉验证

本文探讨了机器学习中分类任务的基本方法,包括一法与x折法等验证手段,并介绍了如何利用阈值分类器进行二分类及多分类问题的解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

去一法虽然精细,但是重复训练次数太多,工作量太大。

x折法,经验值是5到10折,关键点是数据分布要平衡随机。


模型结构  在这里我们采用一个阈值在一个特征上进行划分。

搜索过程  在这里我们尽可能多的尝试所有特征和阈值的组合。

损失函数  我们通过损失函数来确定哪些可能性不会太差(因为我们不会去讨论完美的解决方案)。我们可以用训练误差或者其他方式定义这一点,比如我们想要最高的正确率。一般来说,人们希望损失函数最小化。


二分类和多分类

阈值分类器,是一个简单的二类分类器,由于数据点不是高于阈值就是低于阈值,所以分类结果不是第一个类,就是第二个类.

我们可以将多分类问题细化成一系列二分决策:是1还是其它。

作为另外一种选择,我们还可以构建一个分类树。将每一个可能的标签分成两段,然后构建一个分类器判断“样本应该向左走还是向右走”。我们可以对标签递归地切分,直到得到一个单一标签

大多数分类器都是二分类系统,而很多现实问题天然就是多类别的。通过一些简单方法,我们可以把多分类问题细化成一系列二分类决策,在多分类问题中使用二分类模型。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值