VecMap: unsupervised cross-lingual mappings of word embeddings(精细解读与Python实例分析)

VecMap是一种用于无监督跨语言词嵌入映射的方法,旨在通过独立训练的语言嵌入和线性变换找到共享空间。本文深入解析ACL 2018相关论文,介绍其在减少双语监督需求上的创新,包括基于分布信息的初始化和自我学习优化策略,并通过Python实例展示其实现效果。实验表明,尽管存在挑战,如局部最优问题,VecMap仍能产生高质量的映射,尤其在词汇翻译准确性方面表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cross-lingual embedding mappings 是NLP(或机器翻译)中一个常见的基础任务。通常,要使用神经网络来实现一些NLP的任务,我们需要为每个单词找到一个numerical representation/real vector。这种任务可以由word2vec过程来完成(具体方法有CBOW 和 skip-grams)。但一种语言的语料库只能生成一套word embeddings。在进行机器翻译的时候,我们要面对的是两种(及以上)不同的语言,这时就需要利用Cross-lingual embedding mappings 来 learn bilingual word embeddings。如下图所示,the underlying idea is to independently train the embeddings in different languages using monolingual corpora, and then map them to a shared space through a linear transformation.

本文主要分析ACL 2018的一篇相关论文:

A robust self-learning method for fully unsupervised cross-lingual mappings o

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值