深度学习的恶意样本实践(Adversarial Example)

本文探讨深度学习模型的脆弱性,通过Adversarial Example(AE)如FGSM、IGSM、DeepFool和JSMA等方法,展示了如何生成恶意样本误导ResNet模型。在CIFAR10数据集上,实验表明即使微小的扰动也能导致高准确率的模型出错。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

〇、深度学习的恶意样本(Adversarial Example)

随着深度学习研究的深入,相关应用已经在许多领域展现出惊人的表现。一方面,深度学习的强大能力着实吸引着学术界和产业界的眼球。另外一方面,深度学习的安全问题也开始引起广泛地关注。对于一个给定的深度神经网络,经过训练,它可能在具体任务上(例如图像识别)表现出较高的准确率。但是在原本能够被正确分类的图像中引入稍许(人眼不易察觉)扰动,神经网络模型就可能被误导,从而得出错误的分类结果。例如,下图中最左侧的熊猫图片本来可以被正确分类,向其中加入一定的扰动,结果会得到右侧的熊猫图片。在人眼看来,它仍然是熊猫,但是神经网络模型却以相当高的置信率将其识别成了长臂猿。最右侧这个经过精心调整的能够误导神经网络模型的图像就被称为是恶意样本(Adversarial Example),或简称AE。

本文主要介绍几种流行的恶意样本(Adversarial Example)的生成方法,以下实验代码采用Python语言,环境是Ubuntu 18.04,深度学习模型以残差神经网络ResNet为例,它是基于Keras框架实现的。欢迎关注白马负金羁的博客 ,为保证公式、图表得以正确显示,强烈建议你从该地址(

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值