【NLP】gensim保存存储和加载fasttext词向量模型

本文演示了如何使用Gensim库中的FastText模型训练小型语料库的词向量。通过实例化FastText模型,设置参数如vector_size、window和min_count,然后使用内置的common_texts数据集构建词汇表并进行训练。训练完成后,模型可以被保存和加载以供后续使用。这个过程对于理解词向量的训练流程非常有帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下举例训练小的语料库的方法,大的语料库,训练词向量操作流程不一样
参考https://radimrehurek.com/gensim_3.8.3/models/fasttext.html

from gensim.models import FastText
from gensim.test.utils import common_texts  # 内置一些例子

print(common_texts[0])
# ['human', 'interface', 'computer']
# 训练词向量
model = FastText(vector_size=4, window=3, min_count=1)  # instantiate
model.build_vocab(sentences=common_texts)
model.train(sentences=common_texts, total_examples=len(common_texts), epochs=10)  # train

# 保存
fname = "fasttext.model"
model.save(fname)
# 加载
model = FastText.load(fname)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值