【Leetcode刷题Python】42. 接雨水

该博客介绍了如何利用栈解决计算非负整数数组表示的柱状图中雨水容量的问题。解析了方法一是通过栈来跟踪柱子高度,当新元素小于栈顶元素则入栈,否则出栈并计算凹槽的雨水面积。最后将所有凹槽面积求和得到结果。提供的Python实现详细展示了这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 题目

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

在这里插入图片描述

2 解析

(1)方法一:栈
将墙的高度入栈,当新元素小于栈顶元素,就入栈,反之就出栈,并计算凹槽内的长和宽。最后将每个长方形面积求和。

注意:凹槽的高度是由 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度 来计算的。如下图的是左边的2号柱子的高度建议1号柱子的高度。
请添加图片描述
凹槽的宽度是由凹槽右边的下标 – 凹槽左边的下标 – 1(因为只求中间宽度)来计算的。
请添加图片描述

3 Python实现

class Solution:
    def trap(sel, height: List[int]) -> int:
        stack = []
        result = 0
        for i in range(len(height)):
            if not stack:
                stack.append(i)
            elif height[i]<height[stack[-1]]:
                stack.append(i)
            else:
                while stack and height[stack[-1]]<height[i]:
                    # 
                    index = stack[-1]
                    stack.pop()
                    if stack:
                        h = min(height[i],height[stack[-1]])-height[index]
                        w = i - stack[-1]-1
                        result +=w*h
                stack.append(i)
        return result 
### LeetCodePython 的解思路及代码示例 #### 使用 Python 标准库的重要性 在解决 LeetCode时,熟悉 Python 标准库能够显著提高效率并简化代码逻辑。Python 提供了许多强大的内置模块和函数,这些工具可以帮助开发者快速处理复杂的数据结构和算法[^1]。 以下是几个常见的 LeetCode 目及其对应的 Python 解法: --- #### 示例一:有效括号 (LeetCode 20) 此问是经典的栈操作案例。给定一个只包含 `'('` 和 `')'` 的字符串,判断该字符串中的括号是否合法。可以通过模拟栈的操作来验证每一对括号的匹配情况。 ```python def isValid(s: str) -> bool: stack = [] mapping = {")": "(", "}": "{", "]": "["} for char in s: if char in mapping.values(): stack.append(char) elif char in mapping.keys(): if not stack or stack.pop() != mapping[char]: return False return not stack ``` 上述代码利用了字典存储括号之间的映射关系,并通过列表作为栈的基础数据结构完成匹配过程[^2]。 --- #### 示例二:链表反转部分节点 (LeetCode 92 或 类似于引用中的第 4 条) 对于链表类目,通常涉及指针操作以及边界条件的严格控制。以下是一个简单的例子——局部翻转链表的部分节点。 输入样例: - 输入:`head = [1,2,3,4,5], k = 3` - 输出:`[3,2,1,4,5]` 解决方案如下所示: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def reverseKGroup(head: ListNode, k: int) -> ListNode: dummy = jump = ListNode(0) dummy.next = l = r = head while True: count = 0 while r and count < k: # 判断是否有k个节点待反转 r = r.next count += 1 if count == k: # 如果满足,则执行反转 pre, cur = None, l for _ in range(k): # 反转l到r之前的k个节点 temp = cur.next cur.next = pre pre = cur cur = temp jump.next = pre # 连已反转部分与剩余未反转部分 jump = l # 移动jump至当前组最后一个节点位置(l现在指向原组最后一位) l = r # 更新下一次循环起点为下一组的第一个节点(r此时位于下一组第一个节点处或者None) else: # 不足k个则无需继续反转 break jump.next = l # 将最后一段不足k个的节点连起来 return dummy.next # 返回新头结点dummy.next ``` 这段代码实现了对指定长度子序列的逆序排列功能[^4]。 --- #### 示例三:二叉树遍历系列 (LeetCode 144/94/145) 针对二叉树的不同遍历方式(前序、中序、后序),可以采用递归方法轻松实现。下面分别展示这三种基本形式的具体实现方案。 ##### 前序遍历 (Preorder Traversal) ```python def preorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return result.append(node.val) # 访问根节点 dfs(node.left) # 左子树递归访问 dfs(node.right) # 右子树递归访问 dfs(root) return result ``` ##### 中序遍历 (Inorder Traversal) ```python def inorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return dfs(node.left) # 左子树递归访问 result.append(node.val) # 访问根节点 dfs(node.right) # 右子树递归访问 dfs(root) return result ``` ##### 后序遍历 (Postorder Traversal) ```python def postorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return dfs(node.left) # 左子树递归访问 dfs(node.right) # 右子树递归访问 result.append(node.val) # 访问根节点 dfs(root) return result ``` 以上三个版本均基于深度优先搜索策略构建而成,区别仅在于何时记录当前节点值的时间点不同而已[^3]。 --- ### 总结 通过对典型 LeetCode 目的解析可以看出,在日常过程中注重积累常用技巧非常重要;比如善用堆栈解决配对问、灵活运用链表双指针技术优化空间性能指标等等。同时也要不断巩固基础理论知识体系,这样才能更好地应对各种复杂的场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值