本文首发于《中兴通讯技术》。边缘计算社区经过沟通取得授权发布。
摘要:在业界云边协同应用场景和云边协同通用参考框架基础上提出移动边缘计算(MEC)云边协同参考架构,分析了狭义 MEC 与广义 MEC 的云边协同不同点,具体给出MEC边缘网络服务、边缘运营管理、云边平台服务、云边业务应用 4 大类的协同,为运营商的5G MEC云边协同发展提供参考。
关键词:多接入边缘计算;云边协同;边缘计算;Kubernetes
随着 5G独立组网(SA)的正式建设,作为5G SA 核心能力之一的移动边缘计算(MEC)[1]也正式启动商业部署和运营。虽然 MEC 试点已开展较多,但其作为一个 IT 和 CT 融合平台,存在多重挑战[2]。充满不确定性但似乎又有无限可能,这既是 MEC让人困惑之处,也是MEC被寄予厚望之处。
全球电信运营商对 MEC 的技术选择与商业运营思路并不完全相同,对于将云计算作为战略型业务发展的主导运营商来说,MEC 不仅仅是 5G 边缘计算平台,还普遍被认为是云战略的重要差异化优势之一。MEC 与中心云协同为客户提供云网边一体化服务成为必然选择。
0
1
云边协同应用场景
除了少数在边缘节点终结处理的业务(如部分园区私有云业务)外,对于大部分边缘计算业务来说,云边协同的业务需求普遍存在。边缘计算产业联盟和云计算开源产业联盟总结了内容分发网络(CDN)、工业互联网、能源、智能家庭、智慧交通、安防监控、农业生产、医疗保健、云游戏等云边协同应用场景[3-4]。
其中,有的是因为业务低时延需求,在业务系统云端部署的同时将部分时延敏感实时处理任务下沉到边缘,如工业大数据在云端综合分析处理时可编程逻辑控制器(PLC)采集数据在边缘实时分析处理与控制设备;有的是着眼于降低云端计算压力和网络带宽成本,如CDN应用场景在边缘部署缓存和计算服务,提供边缘加速或作为CDN的进一步下沉节点,以在降低总体成本的同时提升用户的就近服务体验;
有的则综合时延、成本、性能、可靠性等,以实现系统架构的优化并充分发挥云与边的不同优势,如视频安防监控中涉及到视频人工智能(AI)的应用处理,它通过在边缘的视频预分析和AI推理执行,实现视频监控场景实时异常事件的感知及快速处理,在云端则发挥云端算力、开发工具的优势,完成AI模型的训练以及AI分析应用的开发并按需下发给边缘部署。
0
2
云边协同参考框架
边缘计算产业联盟认为云边协同包含云端与边端基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)的多种协同[3],边端边缘计算(EC)-IaaS 与云端 IaaS 应可实现对网络、虚拟化资源等的资源协同;边端 EC-PaaS 与云端 PaaS 应可实现数据协同、智能协同、应用编排协同、业务管理协同;边端 EC-SaaS 与云端 SaaS 应可实现应用服务协同。
云计算开源产业联盟则进一步提出在 IaaS资源、PaaS平台、SaaS应用的协同基础上面还需要考虑计费、运维、安全等方面的协同[4]。
华为作为信息与通信技术(ICT)产业的设备与服务提供商,在边缘计算领域的布局涉及“云、管、边、端、芯”。其中,华为云提出基于 Kubernetes 扩展的云边协同开源项目——KubeEdge[5],并将其贡献给云原生计算基金会(CNCF)。作为一个智能边缘平台,KubeEdge包含了边端的计算节点部分和云端的管理控制部分,其云边协同体现在:
1)基于WebSocket 和 Quic 协议构建了可靠、高效的云边消息通信,并作为云边控制协同、数据协同的通信基础;
2)扩展了 Kubernetes,实现云边协同编排管理,包括基于云端的边缘控制器 EdgeCo