hadoop的HA搭建

集群规划

note01note02note03
NameNodeNameNode
JournalNodeJournalNodeJournalNode
DataNodeDataNodeDataNode
ZKZKZK
ResourceManagerResourceManager
NodeManagerNodeManagerNodeManager

保证jdk安装并且集群时间同步器同步

zookeeper

  1. 集群规划

在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。

  1. 解压安装

(1)解压Zookeeper安装包到/opt/module/目录下

tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/

(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData

mkdir -p zkData

(3)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg

mv zoo_sample.cfg zoo.cfg

  1. 配置zoo.cfg文件

​ (1)具体配置

dataDir=/opt/module/zookeeper-3.4.10/zkData

​ 增加如下配置

server.1=note01:2888:3888

server.2=note02:2888:3888

server.3=note03:2888:3888

(2)配置参数解读

Server.A=B:C:D。

A是一个数字,表示这个是第几号服务器;

B是这个服务器的IP地址;

C是这个服务器与集群中的Leader服务器交换信息的端口;

D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。

  1. 集群操作

(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件

touch myid

添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码

(2)编辑myid文件

vi myid

​ 在文件中添加与server对应的编号:如2

(3)拷贝配置好的zookeeper到其他机器上

scp -r zookeeper-3.4.10/ root@目录:/opt/app/

​ 并分别修改myid文件中内容为3、4

(4)节点分别启动zookeeper

bin/zkServer.sh start

(5)查看状态

bin/zkServer.sh status

hdfs

​ hadoop-env.sh

​ mapred-env.sh

​ yarn-env.sh

全部增加

export JAVA_HOME=/opt/module/jdk1.8.0_144

​ 配置core-site.xml

vim core-site.xml

<!-- 指定HDFS中NameNode的地址 -->
<property>
      <name>fs.defaultFS</name>
      <value>hdfs://mycluster</value>
</property>

<!-- 指定Hadoop运行时产生文件的存储目录 -->
<property>
        <name>hadoop.tmp.dir</name>
        <value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>

配置hdfs-site.xml

<configuration>

        <!-- 完全分布式集群名称 -->
        <property>
                <name>dfs.nameservices</name>
                <value>mycluster</value>
        </property>

        <!-- 集群中NameNode节点都有哪些 -->
        <property>
                <name>dfs.ha.namenodes.mycluster</name>
                <value>nn1,nn2</value>
        </property>

        <!-- nn1的RPC通信地址 -->
        <property>
                <name>dfs.namenode.rpc-address.mycluster.nn1</name>
                <value>note01:9000</value>
        </property>

        <!-- nn2的RPC通信地址 -->
        <property>
                <name>dfs.namenode.rpc-address.mycluster.nn2</name>
                <value>note02:9000</value>
        </property>

        <!-- nn1的http通信地址 -->
        <property>
                <name>dfs.namenode.http-address.mycluster.nn1</name>
                <value>note01:50070</value>
        </property>

                <!-- nn2的http通信地址 -->
        <property>
                <name>dfs.namenode.http-address.mycluster.nn2</name>
                <value>note02:50070</value>
        </property>
        <!-- 指定NameNode元数据在JournalNode上的存放位置 -->
        <property>
                <name>dfs.namenode.shared.edits.dir</name>
                <value>qjournal://note01:8485;note02:8485;note03:8485/mycluster</value>
        </property>

        <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
        <property>
                <name>dfs.ha.fencing.methods</name>
                <value>sshfence</value>
        </property>

        <!-- 使用隔离机制时需要ssh无秘钥登录-->
        <property>
                <name>dfs.ha.fencing.ssh.private-key-files</name>
                <value>/root/.ssh/id_rsa</value>
        </property>

        <!-- 声明journalnode服务器存储目录-->
        <property>
                <name>dfs.journalnode.edits.dir</name>
                <value>/opt/ha/hadoop-2.7.2/data/jn</value>
        </property>
        <property>
                <name>dfs.replication</name>
                <value>1</value>
        </property>

        <!-- 指定Hadoop辅助名称节点主机配置 -->
        <property>
                <name>dfs.namenode.secondary.http-address</name>
                <value>note03:50090</value>
        </property>

</configuration>

启动HDFS-HA集群
  1. 在各个JournalNode节点上,输入以下命令启动journalnode服务

hadoop-daemon.sh start journalnode

  1. 在[nn1]上,对其进行格式化,并启动

    hdfs namenode -format

    hadoop-daemon.sh start namenode

3.在[nn2]上,同步nn1的元数据信息

hdfs namenode -bootstrapStandby

  1. 启动[nn2]

    hadoop-daemon.sh start namenode

    webUI
    在这里插入图片描述
    在这里插入图片描述
    5.在[nn1]上,启动所有datanode

hadoop-daemons.sh start datanode

6.将[nn1]切换为Active

hdfs haadmin -transitionToActive nn1

7.查看是否Active

hdfs haadmin -getServiceState nn1

配置HDFS-HA自动故障转移
  1. 具体配置

​ hdfs-site.xml

<property>
	<name>dfs.ha.automatic-failover.enabled</name>
	<value>true</value>
</property>

​ core-site.xml

<!--zk地址-->
<property>
	<name>ha.zookeeper.quorum</name>
	<value>note01:2181,note02:2181,note03:2181</value>
</property>
  1. 启动

​ 关闭所有HDFS服务

​ stop-dfs.sh

在所有节点上启动zk集群

​ zkServer.sh start

初始化HA在Zookeeper中状态

​ hdfs zkfc -formatZK

启动HDFS服务

​ start-dfs.sh

  1. 验证

    将Active NameNode进程kill

kill -9 namenode的进程id

​ 将Active NameNode机器断开网络

service network stop

yarn

修改yarn-site.xml

<configuration>
   <!--reduce获取数据的方式-->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!--启用resourcemanager ha-->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!--声明两台resourcemanager的地址-->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>note01</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>note02</value>
    </property>
 
    <!--指定zookeeper集群的地址--> 
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>note01:2181,note02:2181,note03:2181</value>
    </property>

    <!--启用自动恢复--> 
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!--指定resourcemanager的状态信息存储在zookeeper集群--> 
    <property>
        <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>

</configuration>

删除其产生的data和log对namenode进行格式化,同步其他节点配置

1.启动全部节点zk

zkServer.sh start
  1. 在各个JournalNode节点上,输入以下命令启动journalnode服务
hadoop-daemon.sh start journalnode
  1. 在[nn1]上,对其进行格式化,并启动
hdfs namenode -format
hadoop-daemon.sh start namenode

4.启动[nn2]

hadoop-daemon.sh start namenode

5.在nn1上启动所有DataNode

hadoop-daemons.sh start datanode

6.将 [nn1]切换成Active

hdfs haadmin -transitionToActive nn1

7.在note01启动yarn

start-yarn.sh

8.在note02上启动rm

yarn-daemon.sh start resourcemanager
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值