集群规划
note01 | note02 | note03 |
---|---|---|
NameNode | NameNode | |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
ZK | ZK | ZK |
ResourceManager | ResourceManager | |
NodeManager | NodeManager | NodeManager |
保证jdk安装并且集群时间同步器同步
zookeeper
- 集群规划
在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。
- 解压安装
(1)解压Zookeeper安装包到/opt/module/目录下
tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/
(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData
mkdir -p zkData
(3)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg
mv zoo_sample.cfg zoo.cfg
- 配置zoo.cfg文件
(1)具体配置
dataDir=/opt/module/zookeeper-3.4.10/zkData
增加如下配置
server.1=note01:2888:3888
server.2=note02:2888:3888
server.3=note03:2888:3888
(2)配置参数解读
Server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的IP地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
- 集群操作
(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件
touch myid
添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码
(2)编辑myid文件
vi myid
在文件中添加与server对应的编号:如2
(3)拷贝配置好的zookeeper到其他机器上
scp -r zookeeper-3.4.10/ root@目录:/opt/app/
并分别修改myid文件中内容为3、4
(4)节点分别启动zookeeper
bin/zkServer.sh start
(5)查看状态
bin/zkServer.sh status
hdfs
hadoop-env.sh
mapred-env.sh
yarn-env.sh
全部增加
export JAVA_HOME=/opt/module/jdk1.8.0_144
配置core-site.xml
vim core-site.xml
<!-- 指定HDFS中NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<!-- 指定Hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
配置hdfs-site.xml
<configuration>
<!-- 完全分布式集群名称 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- 集群中NameNode节点都有哪些 -->
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>note01:9000</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>note02:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>note01:50070</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>note02:50070</value>
</property>
<!-- 指定NameNode元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://note01:8485;note02:8485;note03:8485/mycluster</value>
</property>
<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用隔离机制时需要ssh无秘钥登录-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 声明journalnode服务器存储目录-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/ha/hadoop-2.7.2/data/jn</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<!-- 指定Hadoop辅助名称节点主机配置 -->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>note03:50090</value>
</property>
</configuration>
启动HDFS-HA集群
- 在各个JournalNode节点上,输入以下命令启动journalnode服务
hadoop-daemon.sh start journalnode
-
在[nn1]上,对其进行格式化,并启动
hdfs namenode -format
hadoop-daemon.sh start namenode
3.在[nn2]上,同步nn1的元数据信息
hdfs namenode -bootstrapStandby
-
启动[nn2]
hadoop-daemon.sh start namenode
webUI
5.在[nn1]上,启动所有datanode
hadoop-daemons.sh start datanode
6.将[nn1]切换为Active
hdfs haadmin -transitionToActive nn1
7.查看是否Active
hdfs haadmin -getServiceState nn1
配置HDFS-HA自动故障转移
- 具体配置
hdfs-site.xml
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
core-site.xml
<!--zk地址-->
<property>
<name>ha.zookeeper.quorum</name>
<value>note01:2181,note02:2181,note03:2181</value>
</property>
- 启动
关闭所有HDFS服务
stop-dfs.sh
在所有节点上启动zk集群
zkServer.sh start
初始化HA在Zookeeper中状态
hdfs zkfc -formatZK
启动HDFS服务
start-dfs.sh
-
验证
将Active NameNode进程kill
kill -9 namenode的进程id
将Active NameNode机器断开网络
service network stop
yarn
修改yarn-site.xml
<configuration>
<!--reduce获取数据的方式-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!--启用resourcemanager ha-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--声明两台resourcemanager的地址-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster-yarn1</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>note01</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>note02</value>
</property>
<!--指定zookeeper集群的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>note01:2181,note02:2181,note03:2181</value>
</property>
<!--启用自动恢复-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--指定resourcemanager的状态信息存储在zookeeper集群-->
<property>
<name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
</configuration>
删除其产生的data和log对namenode进行格式化,同步其他节点配置
1.启动全部节点zk
zkServer.sh start
- 在各个JournalNode节点上,输入以下命令启动journalnode服务
hadoop-daemon.sh start journalnode
- 在[nn1]上,对其进行格式化,并启动
hdfs namenode -format
hadoop-daemon.sh start namenode
4.启动[nn2]
hadoop-daemon.sh start namenode
5.在nn1上启动所有DataNode
hadoop-daemons.sh start datanode
6.将 [nn1]切换成Active
hdfs haadmin -transitionToActive nn1
7.在note01启动yarn
start-yarn.sh
8.在note02上启动rm
yarn-daemon.sh start resourcemanager