系统学习最优化理论
什么是最优化问题?
决策问题:
(1)决策变量
(2)目标函数(一个或多个)
(3)一个可由可行策略组成的集合(等式约束或者不等式约束)
最优化问题基本形式
1 最优化问题分类
根据可行域S划分:无约束/约束优化
根据函数的性质划分:线性规划/非线性规划
根据可行域的性质划分:离散优化/连续优化
根据函数的向量性质划分:单目标/多目标优化
根据规划问题有关信息的确定性划分:随机/模糊/确定性规划
2 预备知识
凸优化理论
:凸集、凸函数、凸优化问题- 无约束优化问题的算法
- 约束优化的
最优性条件
及对偶理论
- 线性规划、二次规划算法
- 约束优化的
罚函数
方法
2.1 线性代数知识
最优化问题的表述和求解过程中矩阵
是必不可少的
线性空间
通常考虑的线性空间是n维(列)向量空间 R n R^n Rn,记n维列向量为:
x = ( x 1 , x 2 , . . . , x n ) T x=(x_1,x_2,...,x_n)^T x=(x1