最优化基础 - (最优化问题分类、凸集)

系统学习最优化理论

什么是最优化问题?
决策问题:
(1)决策变量
(2)目标函数(一个或多个)
(3)一个可由可行策略组成的集合(等式约束或者不等式约束)
最优化问题基本形式
在这里插入图片描述

1 最优化问题分类

根据可行域S划分:无约束/约束优化
在这里插入图片描述

根据函数的性质划分:线性规划/非线性规划
在这里插入图片描述
根据可行域的性质划分:离散优化/连续优化
在这里插入图片描述

根据函数的向量性质划分:单目标/多目标优化
在这里插入图片描述

根据规划问题有关信息的确定性划分:随机/模糊/确定性规划
在这里插入图片描述

2 预备知识

  • 凸优化理论:凸集、凸函数、凸优化问题
  • 无约束优化问题的算法
  • 约束优化的最优性条件对偶理论
  • 线性规划、二次规划算法
  • 约束优化的罚函数方法
2.1 线性代数知识

最优化问题的表述和求解过程中矩阵是必不可少的
线性空间
通常考虑的线性空间是n维(列)向量空间 R n R^n Rn,记n维列向量为:
x = ( x 1 , x 2 , . . . , x n ) T x=(x_1,x_2,...,x_n)^T x=(x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值