Matlab 基于Laplacian约束的收缩算法(骨架提取)

本文介绍了基于Laplacian约束的点云骨架提取算法,通过Matlab实现。首先生成初始表面,然后利用拉普拉斯平滑迭代收缩点云,去除噪声并保留几何形状。算法包括最小二乘法求解收缩点云、更新权重矩阵等步骤,直至满足停止条件。提供了一系列实现代码供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果预览

一、简介

骨骼提取一直是广泛研究的焦点,可以追溯到20世纪60年代。现有算法针对的模型特征和应用多种多样,提取过程大致可分为基于体素方法和几何方法。其中,几何方法可以直接作用于三角形网格或点云,就有学者直接利用点云中每个点的邻域信息,通过Laplacian算子迭代式的对点云进行收缩实现了对点云骨架的粗提取,感觉这个过程非常有意思,具体流程如下所述:

1、首先,根据之前的博客Matlab 基于局部三角网的曲面重建的做法,我们先生成一个初始的表面(它由各个局部的多边形组成)。
2、点云收缩,直至收缩到“零容积”。值得注意的是,收缩过程通过应用拉普拉斯平滑去除网格表面的细节和噪声,该平滑将点云中的点沿其近似曲率法线方向进行移动,这是一个迭代过程,会直至点云收缩到很小很细的状态。在真正了解其过程前,我们需要一些基础知识,如下迭代公式所示:

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值