本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
文章目录
相关阅读
小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)
传统轮动策略的致命弱点在于过度反应:机械调仓会放大交易损耗,尤其在震荡市中频繁追涨杀跌。本期通过钝化机制引入评分阈值过滤,降低了开仓次数,达到历史年化收益率69.78%,夏普比率1.52,策略收益104.99%,远高于基准收益的11.92%。