A 控制系统的微分方程
数学模型:描述系统输入、输出变量以及内部各变量之间关系的数学表达式。
描述各变量动态关系的表达式称为动态数学模型,常用的动态模型为微分方程
。 建立数学模型的方法分为解析法和实验法。
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学 表达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(阶跃信号、单位脉冲信号、正弦信号 等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
解析法适用于简单、典型、常见的系统;实验法适用于复杂、非常见的系统。实际上经常把两种方法结合起来建立系统数学模型。
建立微分方程的步骤:
- 1、分析各元件的工作原理,明确输入、输出量;
- 2、按照信号的传递顺序,列写各变量的动态关系式;
- 3、化简(线性化、消去中间变量),写出输入、输出变量 间的数学表达式。
通常把输入量放在方程左边,输出量放在右边。
B 控制系统的传递函数
传递方便研究系统的结构或者参数变化对系统的影响。
1 传递函数的定义
定义:线性定常系统
,在零初始条件
下,输出变量的拉普拉斯变换(简称 拉氏变化)与输入变量的拉普拉斯变换之比
,称为该系统的传递函数,并 表示为:
G
(
s
)
=
C
(
s
)
R
(
s
)
G(s)=\frac{C(s)}{R(s)}
G(s)=R(s)C(s)
这里的“零初始条件”有两方面含义:
一是指输入作用是t=0后才加于系统的,因此输入量及其各阶 导数,在t =0- 时的值为零。
二是指输入信号作用于系统之前系统是静止的,即 t=0- 时 , 系统的输出量及各阶导数为零。
关于传递函数的几点说明:
- 仅适用于线性定常系统;
- 只反映系统的输入输出关系; (零初始条件下)
- 仅取决于系统结构、参数,与输入形式无关;
- 不同的物理系统可以有相同的传递函数;
- 是变量s的有理分式, 分子、分母的次数满足: m ≤ n m\le n m≤n
2、传递函数的建立
设系统的微分方程为:
在零初始条件下对上式进行拉氏变换
则传递函数为
3、典型环节
系统的传递函数通常可表示为:
G(s)可分解为如下形式
一个传递函数可以分解为若干个基本因子的乘积,每个基本因子(上式子的各个组成)就称为典型环 节。常见的几种形式有
:
环节 | 传递函数 |
---|---|
比例环节 | ![]() |
积分环节 | ![]() |
微分环节 | ![]() |
惯性环节 | ![]() |
一阶微分环节 | ![]() ![]() |
二阶振荡环节 | ![]() ![]() |
二阶微分环节 | ![]() ![]() |
延迟环节 | ![]() |
C 动态结构图
动态结构图:表示组成控制系统的各个元件之间信号传递动态关系的图形。
构成动态结构图的基本单元有四种,即:信号线、方框、综合点和引出点。
系统动态结构图的建立
系统中每个元件用一个或几个方框表示,然后,根据信号传递顺序用信号线 按一定方式连接起来,就构成了系统的动态结构图。
步骤:
- 建立控制系统各元部件的微分方程;
- 对各微分方程在零初始条件下,进行拉普拉斯变换,并作出各元件的结构图;
- 按照系统中各变量的传递顺序,依次将各元件的结构图连接起来,通常输入变 量在左端,输出变量在右端,便可得到系统的动态结构图。
![]() | ![]() |
![]() | ![]() |
![]() |
D 动态结构图的等效变换
1. 串联连接及其等效变换
方框与方框通过信号线相连,前一个方框的输出作为后一个方框的输入, 且中间无引出点、综合点,这种形式的连接称为串联连接。
2. 并联连接及其等效变换
3. 反馈连接及其等效变换
系统的输出信号C(s), 经测量再返回到系统的输入端,构成系统控制信号的一部 分。这种连接形式称为反馈连接。“-”表示负反馈,“+”表示正反馈。
4. 综合点前、后移动等效变换
5.相邻综合点之间的移动
相邻的综合点可以随意交换位置,亦可以将其进行合并成一个综合点。
6. 引出点前、后移动等效变换
7.相邻引出点之间的移动
相邻引出点交换位置,不影响信号的传递关系。
用结构图变换方法求传递函数的基本步骤为:
- 观察结构图,适当移动引出点或综合点,将结构图变成三种典 型连接方式;
- 对于多回路结构图,先求内回路的等效变换方框图,再求外部 回路的等效变换方框图;
- 求出传递函数。
E 梅森公式
几个概念:
- 前向通道:
从输入到输出
的通道,且按照箭头指向经过每一元件只有一次
的通道。 - 回路:在结构图中,信号在其中可以闭合流动,且经
过的任一元件不多于一次
的闭 合回路,称为独立回路,简称为回路。 - 回路传递函数:是指回路中前向通道和反馈通道的传递函数的乘积,并且包含代 表反馈极性的正、负号。
- 互不接触回路:在各回路中,
没有同一信号流过
,这种回路称为互不接触回路。
把一条前向通道去掉(包括流程线),剩下的回路就是余子式。
![]() | ![]() |
![]() |