引言
在教育内容数字化进程中,课程内容摘要生成技术能够从海量教学资源中提炼核心知识点,解决人工编写效率低、知识更新滞后的问题。当前主流方法依赖于深度学习模型,但存在事实性偏差、可解释性不足等缺陷。本文提出一种融合知识蒸馏与事实三元组增强的摘要生成框架,结合业务场景优化模型设计,并基于Python实现核心算法。
一、核心技术:知识蒸馏与事实三元组融合
-
知识蒸馏的轻量化设计
知识蒸馏(Knowledge Distression)通过将复杂教师模型的知识迁移到轻量学生模型中,实现模型压缩与效率提升。在教育场景中,教师模型可选用预训练的T5-Large,学生模型采用T5-Small架构,通过软标签(Soft Label)和注意力对齐(Attention Alignment)实现知识迁移。from transformers import T5ForConditionalGeneration, T5Tokenizer teacher_model = T5ForConditionalGeneration.from_pretrained("t5-large") student_model = T5ForConditionalGeneration.from_pretrained("t5-small") # 软标签蒸馏损失计算 def distillation_loss(teacher_logits, student_logits, temperature=2.0): soft_teacher = torch.nn.functional.softmax(teacher_logits / temperature, dim=-1) soft_student = torch.nn.functional.log_softmax(student_logits / temperature, dim=-1) return torch.nn.KLDivLoss()(soft_student, soft_teacher) * (temperature ** 2)
-
事实三元组增强机制
针对生成内容的事实一致性不足问题,引入LTP-BiLSTM-GAT模型从原始文本提取(Subject, Predicate, Object)三元组,通过图注意力网络(GAT)编码语义关系,并设计双编码器结构将事实特征注入解码过程。class FactEncoder(nn.Module): def __init__(self, hidden_dim): super().__init__() self.bilstm = nn.LSTM(input_size=768, hidden_size=hidden_dim