课程内容摘要生成:基于知识蒸馏与事实增强的深度学习模型实践

引言

在教育内容数字化进程中,课程内容摘要生成技术能够从海量教学资源中提炼核心知识点,解决人工编写效率低、知识更新滞后的问题。当前主流方法依赖于深度学习模型,但存在事实性偏差、可解释性不足等缺陷。本文提出一种融合知识蒸馏与事实三元组增强的摘要生成框架,结合业务场景优化模型设计,并基于Python实现核心算法。


一、核心技术:知识蒸馏与事实三元组融合

  1. 知识蒸馏的轻量化设计
    知识蒸馏(Knowledge Distression)通过将复杂教师模型的知识迁移到轻量学生模型中,实现模型压缩与效率提升。在教育场景中,教师模型可选用预训练的T5-Large,学生模型采用T5-Small架构,通过软标签(Soft Label)和注意力对齐(Attention Alignment)实现知识迁移。

    from transformers import T5ForConditionalGeneration, T5Tokenizer
    teacher_model = T5ForConditionalGeneration.from_pretrained("t5-large")
    student_model = T5ForConditionalGeneration.from_pretrained("t5-small")
    
    # 软标签蒸馏损失计算
    def distillation_loss(teacher_logits, student_logits, temperature=2.0):
        soft_teacher = torch.nn.functional.softmax(teacher_logits / temperature, dim=-1)
        soft_student = torch.nn.functional.log_softmax(student_logits / temperature, dim=-1)
        return torch.nn.KLDivLoss()(soft_student, soft_teacher) * (temperature ** 2)
    
  2. 事实三元组增强机制
    针对生成内容的事实一致性不足问题,引入LTP-BiLSTM-GAT模型从原始文本提取(Subject, Predicate, Object)三元组,通过图注意力网络(GAT)编码语义关系,并设计双编码器结构将事实特征注入解码过程。

    class FactEncoder(nn.Module):
        def __init__(self, hidden_dim):
            super().__init__()
            self.bilstm = nn.LSTM(input_size=768, hidden_size=hidden_dim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制独立开发

感觉不错就支持一下呗!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值