样本均值的特征与分布

本文探讨样本均值的特征与分布,涉及大数定律和中心极限定理的证明。样本均值期望E(X⎯⎯⎯)=u,方差D(X⎯⎯⎯)=σ2/n,当总体为正态分布时,有特定的分布规律。同时强调了样本方差的修正和自由度的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样本均值的特征与分布

@(概率论)

这个分布的推导将需要回到大数定律与中心极限定理中去才能证明。

需要严格区分样本均值与一次取样的分布。

X1,X2,...,Xn是取自总体的样本,则

E(Xi)=u,D(Xi)=σ2

E(X)=u,D(X)=σ2n

证明如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值