总结利用秩为1的矩阵相关矩阵的秩的计算问题

本文聚焦于秩为1的矩阵在相关矩阵秩计算中的应用。通过分析秩为1矩阵的特性,指出直接根据r(αα^T)=1来解题的不准确性。正确方法涉及单位向量的性质,以及秩为1矩阵的特征值和特征向量的关系。文章通过一道习题,展示了如何得出E-αα^T的秩为2的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结利用秩为1的矩阵相关矩阵的秩的计算问题

@(线性代数)

对于一个秩为1的矩阵,常常给定的是一个列向量与自己的转置之积。

http://blog.csdn.net/u011240016/article/details/52805663

http://blog.csdn.net/u011240016/article/details/52869027

回顾前面两篇关于秩为1的矩阵的基础推导。

再来看一道习题的运用。

(2012.13)设 α 是三维单位列向量,E是三阶单位矩阵,则矩阵 EααT 的秩为?

分析:如果直接根据 r(ααT)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值