禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
介绍
本教程旨在通过R语言及其相关数据可视化包,展示如何对种质资源的主成分分析(PCA)结果进行可视化,并结合基因组选择(Genomic Selection, GS)和未来气候(Future Climates, FC)评分进行综合分析。PCA是一种常用的数据降维技术,能够帮助研究人员识别数据中的主要变异来源。通过本教程,读者将学习如何准备数据、执行PCA分析、绘制散点图以及如何结合基因组选择和未来气候评分进行可视化。
数据准备
教程从读取和整理数据开始。我们使用了多个CSV文件,每个文件包含种质资源的PCA得分、地理信息和基因组选择或未来气候评分。通过read.csv
函数读取这些文件,并使用merge
函数将PCA得分与地理信息和其他评分数据合并。特别地,我们根据种质资源的ID(gen_id
)和地理区域(region
)对数据进行了合并,以确保每个数据点都有完整的PCA得分和评分信息。
PCA散点图绘制
在散点图部分,我们使用ggpubr
包的ggscatter
函数绘