禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
介绍
本文详细介绍了如何利用R语言进行海洋微生物群落动态分析,包括数据预处理、模型预测和结果可视化。文章首先导入了多个数据集,包括实验室培养实验、稀释实验和细胞周期分析的数据,以及现场观测数据。这些数据集为微生物群落的分析提供了基础。接着,文章对这些数据进行了预处理,包括去除低值、计算历史与未来情景的变化,并进行了数据的重塑和合并,以便于后续分析。
文章中提到了几种不同的微生物生长模型,如Eppley模型、Thomas模型、Hinshelwood模型等,这些模型考虑了温度、营养盐浓度和光照等因素对微生物生长速率的影响。通过这些模型,研究者能够预测不同环境条件下微生物群落的变化。此外,文章还介绍了如何利用Bootstrap方法评估模型预测的不确定性,并计算了Prochlorococcus属的最佳生长温度。
在数据可视化方面,文章展示了如何利用R语言中的ggplot2和ggpubr包绘制微生物群落对环境变化的响应图和微生物丰度分布图。这些图表直观地展示了微生物群落的结构和功能如何随环境条件变化而变化。
加载R包
library(<